def test_softmax(self): """Test invoking SoftMax in eager mode.""" with context.eager_mode(): input = np.random.rand(5, 10).astype(np.float32) result = layers.SoftMax()(input) expected = tf.nn.softmax(input) assert np.allclose(result, expected)
conv2d_1 = layers.Conv2D(num_outputs=32, activation_fn=tf.nn.relu, in_layers=make_image) conv2d_2 = layers.Conv2D(num_outputs=64, activation_fn=tf.nn.relu, in_layers=conv2d_1) flatten = layers.Flatten(in_layers=conv2d_2) dense1 = layers.Dense(out_channels=1024, activation_fn=tf.nn.relu, in_layers=flatten) dense2 = layers.Dense(out_channels=10, activation_fn=None, in_layers=dense1) # Computes the loss for every sample smce = layers.SoftMaxCrossEntropy(in_layers=[label, dense2]) # Average all the losses loss = layers.ReduceMean(in_layers=smce) model.set_loss(loss) # Convert the output from logits to probs output = layers.SoftMax(in_layers=dense2) model.add_output(output) model.fit(train_dataset, nb_epoch=1) # nb_epoch=10 # Use as metric accuracy: the fraction of labels that are correctly predicted metric = dc.metrics.Metric(dc.metrics.accuracy_score) train_scores = model.evaluate(train_dataset, [metric]) test_scores = model.evaluate(test_dataset, [metric])
def __init__(self, n_generators=1, n_discriminators=1, **kwargs): """Construct a GAN. In addition to the parameters listed below, this class accepts all the keyword arguments from TensorGraph. Parameters ---------- n_generators: int the number of generators to include n_discriminators: int the number of discriminators to include """ super(GAN, self).__init__(use_queue=False, **kwargs) self.n_generators = n_generators self.n_discriminators = n_discriminators # Create the inputs. self.noise_input = layers.Feature(shape=self.get_noise_input_shape()) self.data_inputs = [] for shape in self.get_data_input_shapes(): self.data_inputs.append(layers.Feature(shape=shape)) self.conditional_inputs = [] for shape in self.get_conditional_input_shapes(): self.conditional_inputs.append(layers.Feature(shape=shape)) # Create the generators. self.generators = [] for i in range(n_generators): generator = self.create_generator(self.noise_input, self.conditional_inputs) if not isinstance(generator, Sequence): raise ValueError( 'create_generator() must return a list of Layers') if len(generator) != len(self.data_inputs): raise ValueError( 'The number of generator outputs must match the number of data inputs' ) for g, d in zip(generator, self.data_inputs): if g.shape != d.shape: raise ValueError( 'The shapes of the generator outputs must match the shapes of the data inputs' ) for g in generator: self.add_output(g) self.generators.append(generator) # Create the discriminators. self.discrim_train = [] self.discrim_gen = [] for i in range(n_discriminators): discrim_train = self.create_discriminator(self.data_inputs, self.conditional_inputs) self.discrim_train.append(discrim_train) # Make a copy of the discriminator that takes each generator's output as # its input. for generator in self.generators: replacements = {} for g, d in zip(generator, self.data_inputs): replacements[d] = g for c in self.conditional_inputs: replacements[c] = c discrim_gen = discrim_train.copy(replacements, shared=True) self.discrim_gen.append(discrim_gen) # Make a list of all layers in the generators and discriminators. def add_layers_to_set(layer, layers): if layer not in layers: layers.add(layer) for i in layer.in_layers: add_layers_to_set(i, layers) gen_layers = set() for generator in self.generators: for layer in generator: add_layers_to_set(layer, gen_layers) discrim_layers = set() for discriminator in self.discrim_train: add_layers_to_set(discriminator, discrim_layers) discrim_layers -= gen_layers # Compute the loss functions. gen_losses = [self.create_generator_loss(d) for d in self.discrim_gen] discrim_losses = [] for i in range(n_discriminators): for j in range(n_generators): discrim_losses.append( self.create_discriminator_loss( self.discrim_train[i], self.discrim_gen[i * n_generators + j])) if n_generators == 1 and n_discriminators == 1: total_gen_loss = gen_losses[0] total_discrim_loss = discrim_losses[0] else: # Create learnable weights for the generators and discriminators. gen_alpha = layers.Variable(np.ones((1, n_generators))) gen_weights = layers.SoftMax(gen_alpha) discrim_alpha = layers.Variable(np.ones((1, n_discriminators))) discrim_weights = layers.SoftMax(discrim_alpha) # Compute the weighted errors weight_products = layers.Reshape( (n_generators * n_discriminators, ), in_layers=layers.Reshape( (n_discriminators, 1), in_layers=discrim_weights) * layers.Reshape((1, n_generators), in_layers=gen_weights)) total_gen_loss = layers.WeightedError( (layers.Stack(gen_losses, axis=0), weight_products)) total_discrim_loss = layers.WeightedError( (layers.Stack(discrim_losses, axis=0), weight_products)) gen_layers.add(gen_alpha) discrim_layers.add(gen_alpha) discrim_layers.add(discrim_alpha) # Add an entropy term to the loss. entropy = -(layers.ReduceSum(layers.Log(gen_weights)) / n_generators + layers.ReduceSum( layers.Log(discrim_weights)) / n_discriminators) total_discrim_loss += entropy # Create submodels for training the generators and discriminators. self.generator_submodel = self.create_submodel(layers=gen_layers, loss=total_gen_loss) self.discriminator_submodel = self.create_submodel( layers=discrim_layers, loss=total_discrim_loss)
def create_model(): """ Create our own MNIST model from scratch :return: :rtype: """ mnist = input_data.read_data_sets("MNIST_DATA/", one_hot=True) # the layers from deepchem are the building blocks of what we will use to make our deep learning architecture # now we wrap our dataset into a NumpyDataset train_dataset = dc.data.NumpyDataset(mnist.train.images, mnist.train.labels) test_dataset = dc.data.NumpyDataset(mnist.test.images, mnist.test.labels) # we will create a model that will take an input, add multiple layers, where each layer takes input from the # previous layers. model = dc.models.TensorGraph(model_dir='mnist') # 784 corresponds to an image of size 28 X 28 # 10 corresponds to the fact that there are 10 possible digits (0-9) # the None indicates that we can accept any size input (e.g. an empty array or 500 items each with 784 features) # our data is also categorical so we must one hot encode, set single array element to 1 and the rest to 0 feature = layers.Feature(shape=(None, 784)) labels = layers.Label(shape=(None, 10)) # in order to apply convolutional layers to our input, we convert flat vector of 785 to 28X28 # in_layers means it takes our feature layer as an input make_image = layers.Reshape(shape=(None, 28, 28), in_layers=feature) # now that we have reshaped the input, we pass to convolution layers conv2d_1 = layers.Conv2D(num_outputs=32, activation_fn=tf.nn.relu, in_layers=make_image) conv2d_2 = layers.Conv2D(num_outputs=64, activation_fn=tf.nn.relu, in_layers=conv2d_1) # we want to end by applying fully connected (Dense) layers to the outputs of our convolutional layer # but first, we must flatten the layer from a 2d matrix to a 1d vector flatten = layers.Flatten(in_layers=conv2d_2) dense1 = layers.Dense(out_channels=1024, activation_fn=tf.nn.relu, in_layers=flatten) # note that this is final layer so out_channels of 10 represents the 10 outputs and no activation_fn dense2 = layers.Dense(out_channels=10, activation_fn=None, in_layers=dense1) # next we want to connect this output to a loss function, so we can train the output # compute the value of loss function for every sample then average of all samples to get final loss (ReduceMean) smce = layers.SoftMaxCrossEntropy(in_layers=[labels, dense2]) loss = layers.ReduceMean(in_layers=smce) model.set_loss(loss) # for MNIST we want the probability that a given sample represents one of the 10 digits # we can achieve this using a softmax function to get the probabilities, then cross entropy to get the labels output = layers.SoftMax(in_layers=dense2) model.add_output(output) # if our model takes long to train, reduce nb_epoch to 1 model.fit(train_dataset, nb_epoch=10) # our metric is accuracy, the fraction of labels that are accurately predicted metric = dc.metrics.Metric(dc.metrics.accuracy_score) train_scores = model.evaluate(train_dataset, [metric]) test_scores = model.evaluate(test_dataset, [metric]) print('train_scores', train_scores) print('test_scores', test_scores)