Example #1
0
  def build_graph(self):
    """
    Building graph structures:
    """
    self.m1_features = Feature(shape=(None, self.n_features))
    self.m2_features = Feature(shape=(None, self.n_features))
    prev_layer1 = self.m1_features
    prev_layer2 = self.m2_features
    for layer_size in self.layer_sizes:
      prev_layer1 = Dense(
          out_channels=layer_size,
          in_layers=[prev_layer1],
          activation_fn=tf.nn.relu)
      prev_layer2 = prev_layer1.shared([prev_layer2])
      if self.dropout > 0.0:
        prev_layer1 = Dropout(self.dropout, in_layers=prev_layer1)
        prev_layer2 = Dropout(self.dropout, in_layers=prev_layer2)

    readout_m1 = Dense(
        out_channels=1, in_layers=[prev_layer1], activation_fn=None)
    readout_m2 = readout_m1.shared([prev_layer2])
    self.add_output(Sigmoid(readout_m1) * 4 + 1)
    self.add_output(Sigmoid(readout_m2) * 4 + 1)

    self.difference = readout_m1 - readout_m2
    label = Label(shape=(None, 1))
    loss = HingeLoss(in_layers=[label, self.difference])
    self.my_task_weights = Weights(shape=(None, 1))
    loss = WeightedError(in_layers=[loss, self.my_task_weights])
    self.set_loss(loss)
Example #2
0
    def build_graph(self):
        self.atom_features = Feature(shape=(None, 75))
        self.degree_slice = Feature(shape=(None, 2), dtype=tf.int32)
        self.membership = Feature(shape=(None, ), dtype=tf.int32)

        self.deg_adjs = []
        for i in range(0, 10 + 1):
            deg_adj = Feature(shape=(None, i + 1), dtype=tf.int32)
            self.deg_adjs.append(deg_adj)
        in_layer = self.atom_features
        for layer_size in self.graph_conv_layers:
            gc1_in = [in_layer, self.degree_slice, self.membership
                      ] + self.deg_adjs
            gc1 = GraphConv(layer_size,
                            activation_fn=tf.nn.relu,
                            in_layers=gc1_in)
            batch_norm1 = MyBatchNorm(in_layers=[gc1])
            gp_in = [batch_norm1, self.degree_slice, self.membership
                     ] + self.deg_adjs
            in_layer = GraphPool(in_layers=gp_in)
        dense = Dense(out_channels=self.dense_layer_size[0],
                      activation_fn=tf.nn.relu,
                      in_layers=[in_layer])
        batch_norm3 = MyBatchNorm(in_layers=[dense])
        batch_norm3 = Dropout(self.dropout, in_layers=[batch_norm3])
        readout = GraphGather(
            batch_size=self.batch_size,
            activation_fn=tf.nn.tanh,
            in_layers=[batch_norm3, self.degree_slice, self.membership] +
            self.deg_adjs)

        curLayer = readout
        for myind in range(1, len(self.dense_layer_size) - 1):
            curLayer = Dense(out_channels=self.dense_layer_size[myind],
                             activation_fn=tf.nn.relu,
                             in_layers=[curLayer])
            curLayer = Dropout(self.dropout, in_layers=[curLayer])

        classification = Dense(out_channels=self.n_tasks,
                               activation_fn=None,
                               in_layers=[curLayer])
        sigmoid = MySigmoid(in_layers=[classification])
        self.add_output(sigmoid)

        self.label = Label(shape=(None, self.n_tasks))
        all_cost = MySigmoidCrossEntropy(
            in_layers=[self.label, classification])
        self.weights = Weights(shape=(None, self.n_tasks))
        loss = WeightedError(in_layers=[all_cost, self.weights])
        self.set_loss(loss)

        self.mydense = dense
        self.myreadout = readout
        self.myclassification = classification
        self.mysigmoid = sigmoid
        self.myall_cost = all_cost
        self.myloss = loss
Example #3
0
  def build_graph(self):
    self.vertex_features = Feature(shape=(None, self.max_atoms, 75))
    self.adj_matrix = Feature(shape=(None, self.max_atoms, 1, self.max_atoms))
    self.mask = Feature(shape=(None, self.max_atoms, 1))

    gcnn1 = BatchNorm(
        GraphCNN(
            num_filters=64,
            in_layers=[self.vertex_features, self.adj_matrix, self.mask]))
    gcnn1 = Dropout(self.dropout, in_layers=gcnn1)
    gcnn2 = BatchNorm(
        GraphCNN(num_filters=64, in_layers=[gcnn1, self.adj_matrix, self.mask]))
    gcnn2 = Dropout(self.dropout, in_layers=gcnn2)
    gc_pool, adj_matrix = GraphCNNPool(
        num_vertices=32, in_layers=[gcnn2, self.adj_matrix, self.mask])
    gc_pool = BatchNorm(gc_pool)
    gc_pool = Dropout(self.dropout, in_layers=gc_pool)
    gcnn3 = BatchNorm(GraphCNN(num_filters=32, in_layers=[gc_pool, adj_matrix]))
    gcnn3 = Dropout(self.dropout, in_layers=gcnn3)
    gc_pool2, adj_matrix2 = GraphCNNPool(
        num_vertices=8, in_layers=[gcnn3, adj_matrix])
    gc_pool2 = BatchNorm(gc_pool2)
    gc_pool2 = Dropout(self.dropout, in_layers=gc_pool2)
    flattened = Flatten(in_layers=gc_pool2)
    readout = Dense(
        out_channels=256, activation_fn=tf.nn.relu, in_layers=flattened)
    costs = []
    self.my_labels = []
    for task in range(self.n_tasks):
      if self.mode == 'classification':
        classification = Dense(
            out_channels=2, activation_fn=None, in_layers=[readout])

        softmax = SoftMax(in_layers=[classification])
        self.add_output(softmax)

        label = Label(shape=(None, 2))
        self.my_labels.append(label)
        cost = SoftMaxCrossEntropy(in_layers=[label, classification])
        costs.append(cost)
      if self.mode == 'regression':
        regression = Dense(
            out_channels=1, activation_fn=None, in_layers=[readout])
        self.add_output(regression)

        label = Label(shape=(None, 1))
        self.my_labels.append(label)
        cost = L2Loss(in_layers=[label, regression])
        costs.append(cost)
    if self.mode == "classification":
      entropy = Stack(in_layers=costs, axis=-1)
    elif self.mode == "regression":
      entropy = Stack(in_layers=costs, axis=1)
    self.my_task_weights = Weights(shape=(None, self.n_tasks))
    loss = WeightedError(in_layers=[entropy, self.my_task_weights])
    self.set_loss(loss)
Example #4
0
    def build_graph(self):
        """Building graph structures:
            Features => DTNNEmbedding => DTNNStep => DTNNStep => DTNNGather => Regression
            """
        self.atom_number = Feature(shape=(None, ), dtype=tf.int32)
        self.distance = Feature(shape=(None, self.n_distance))
        self.atom_membership = Feature(shape=(None, ), dtype=tf.int32)
        self.distance_membership_i = Feature(shape=(None, ), dtype=tf.int32)
        self.distance_membership_j = Feature(shape=(None, ), dtype=tf.int32)

        dtnn_embedding = DTNNEmbedding(n_embedding=self.n_embedding,
                                       in_layers=[self.atom_number])
        if self.dropout > 0.0:
            dtnn_embedding = Dropout(self.dropout, in_layers=dtnn_embedding)
        dtnn_layer1 = DTNNStep(n_embedding=self.n_embedding,
                               n_distance=self.n_distance,
                               in_layers=[
                                   dtnn_embedding, self.distance,
                                   self.distance_membership_i,
                                   self.distance_membership_j
                               ])
        if self.dropout > 0.0:
            dtnn_layer1 = Dropout(self.dropout, in_layers=dtnn_layer1)
        dtnn_layer2 = DTNNStep(n_embedding=self.n_embedding,
                               n_distance=self.n_distance,
                               in_layers=[
                                   dtnn_layer1, self.distance,
                                   self.distance_membership_i,
                                   self.distance_membership_j
                               ])
        if self.dropout > 0.0:
            dtnn_layer2 = Dropout(self.dropout, in_layers=dtnn_layer2)
        dtnn_gather = DTNNGather(n_embedding=self.n_embedding,
                                 layer_sizes=[self.n_hidden],
                                 n_outputs=self.n_tasks,
                                 output_activation=self.output_activation,
                                 in_layers=[dtnn_layer2, self.atom_membership])
        if self.dropout > 0.0:
            dtnn_gather = Dropout(self.dropout, in_layers=dtnn_gather)

        n_tasks = self.n_tasks
        weights = Weights(shape=(None, n_tasks))
        labels = Label(shape=(None, n_tasks))
        output = Reshape(
            shape=(None, n_tasks),
            in_layers=[Dense(in_layers=dtnn_gather, out_channels=n_tasks)])
        self.add_output(output)
        weighted_loss = ReduceSum(L2Loss(in_layers=[labels, output, weights]))
        self.set_loss(weighted_loss)
Example #5
0
    def _build_graph(self):

        self.one_hot_seq = Feature(shape=(None, self.pad_length,
                                          self.num_amino_acids),
                                   dtype=tf.float32)

        conv1 = Conv1D(kernel_size=2,
                       filters=512,
                       in_layers=[self.one_hot_seq])

        maxpool1 = MaxPool1D(strides=2, padding="VALID", in_layers=[conv1])
        conv2 = Conv1D(kernel_size=3, filters=512, in_layers=[maxpool1])
        flattened = Flatten(in_layers=[conv2])
        dense1 = Dense(out_channels=400,
                       in_layers=[flattened],
                       activation_fn=tf.nn.tanh)
        dropout = Dropout(dropout_prob=self.dropout_p, in_layers=[dense1])
        output = Dense(out_channels=1, in_layers=[dropout], activation_fn=None)
        self.add_output(output)

        if self.mode == "regression":
            label = Label(shape=(None, 1))
            loss = L2Loss(in_layers=[label, output])
        else:
            raise NotImplementedError(
                "Classification support not added yet. Missing details in paper."
            )
        weights = Weights(shape=(None, ))
        weighted_loss = WeightedError(in_layers=[loss, weights])
        self.set_loss(weighted_loss)
Example #6
0
  def build_graph(self):
    self.smiles_seqs = Feature(shape=(None, self.seq_length), dtype=tf.int32)
    # Character embedding
    self.Embedding = DTNNEmbedding(
        n_embedding=self.n_embedding,
        periodic_table_length=len(self.char_dict.keys()) + 1,
        in_layers=[self.smiles_seqs])
    self.pooled_outputs = []
    self.conv_layers = []
    for filter_size, num_filter in zip(self.kernel_sizes, self.num_filters):
      # Multiple convolutional layers with different filter widths
      self.conv_layers.append(
          Conv1D(
              kernel_size=filter_size,
              filters=num_filter,
              padding='valid',
              in_layers=[self.Embedding]))
      # Max-over-time pooling
      self.pooled_outputs.append(
          ReduceMax(axis=1, in_layers=[self.conv_layers[-1]]))
    # Concat features from all filters(one feature per filter)
    concat_outputs = Concat(axis=1, in_layers=self.pooled_outputs)
    dropout = Dropout(dropout_prob=self.dropout, in_layers=[concat_outputs])
    dense = Dense(
        out_channels=200, activation_fn=tf.nn.relu, in_layers=[dropout])
    # Highway layer from https://arxiv.org/pdf/1505.00387.pdf
    self.gather = Highway(in_layers=[dense])

    costs = []
    self.labels_fd = []
    for task in range(self.n_tasks):
      if self.mode == "classification":
        classification = Dense(
            out_channels=2, activation_fn=None, in_layers=[self.gather])
        softmax = SoftMax(in_layers=[classification])
        self.add_output(softmax)

        label = Label(shape=(None, 2))
        self.labels_fd.append(label)
        cost = SoftMaxCrossEntropy(in_layers=[label, classification])
        costs.append(cost)
      if self.mode == "regression":
        regression = Dense(
            out_channels=1, activation_fn=None, in_layers=[self.gather])
        self.add_output(regression)

        label = Label(shape=(None, 1))
        self.labels_fd.append(label)
        cost = L2Loss(in_layers=[label, regression])
        costs.append(cost)
    if self.mode == "classification":
      all_cost = Stack(in_layers=costs, axis=1)
    elif self.mode == "regression":
      all_cost = Stack(in_layers=costs, axis=1)
    self.weights = Weights(shape=(None, self.n_tasks))
    loss = WeightedError(in_layers=[all_cost, self.weights])
    self.set_loss(loss)
Example #7
0
    def _build_graph(self):
        self.smiles_seqs = Feature(shape=(None, self.seq_length),
                                   dtype=tf.int32)
        # Character embedding
        Embedding = DTNNEmbedding(
            n_embedding=self.n_embedding,
            periodic_table_length=len(self.char_dict.keys()) + 1,
            in_layers=[self.smiles_seqs])
        pooled_outputs = []
        conv_layers = []
        for filter_size, num_filter in zip(self.kernel_sizes,
                                           self.num_filters):
            # Multiple convolutional layers with different filter widths
            conv_layers.append(
                Conv1D(kernel_size=filter_size,
                       filters=num_filter,
                       padding='valid',
                       in_layers=[Embedding]))
            # Max-over-time pooling
            pooled_outputs.append(
                ReduceMax(axis=1, in_layers=[conv_layers[-1]]))
        # Concat features from all filters(one feature per filter)
        concat_outputs = Concat(axis=1, in_layers=pooled_outputs)
        dropout = Dropout(dropout_prob=self.dropout,
                          in_layers=[concat_outputs])
        dense = Dense(out_channels=200,
                      activation_fn=tf.nn.relu,
                      in_layers=[dropout])
        # Highway layer from https://arxiv.org/pdf/1505.00387.pdf
        gather = Highway(in_layers=[dense])

        if self.mode == "classification":
            logits = Dense(out_channels=self.n_tasks * 2,
                           activation_fn=None,
                           in_layers=[gather])
            logits = Reshape(shape=(-1, self.n_tasks, 2), in_layers=[logits])
            output = SoftMax(in_layers=[logits])
            self.add_output(output)
            labels = Label(shape=(None, self.n_tasks, 2))
            loss = SoftMaxCrossEntropy(in_layers=[labels, logits])

        else:
            vals = Dense(out_channels=self.n_tasks * 1,
                         activation_fn=None,
                         in_layers=[gather])
            vals = Reshape(shape=(-1, self.n_tasks, 1), in_layers=[vals])
            self.add_output(vals)
            labels = Label(shape=(None, self.n_tasks, 1))
            loss = ReduceSum(L2Loss(in_layers=[labels, vals]))

        weights = Weights(shape=(None, self.n_tasks))
        weighted_loss = WeightedError(in_layers=[loss, weights])
        self.set_loss(weighted_loss)
Example #8
0
    def __init__(self,
                 n_tasks,
                 n_features,
                 layer_sizes=[1000],
                 weight_init_stddevs=0.02,
                 bias_init_consts=1.0,
                 weight_decay_penalty=0.0,
                 weight_decay_penalty_type="l2",
                 dropouts=0.5,
                 activation_fns=tf.nn.relu,
                 n_classes=2,
                 **kwargs):
        """Create a MultitaskClassifier.

    In addition to the following arguments, this class also accepts
    all the keyword arguments from TensorGraph.

    Parameters
    ----------
    n_tasks: int
      number of tasks
    n_features: int
      number of features
    layer_sizes: list
      the size of each dense layer in the network.  The length of
      this list determines the number of layers.
    weight_init_stddevs: list or float
      the standard deviation of the distribution to use for weight
      initialization of each layer.  The length of this list should
      equal len(layer_sizes).  Alternatively this may be a single
      value instead of a list, in which case the same value is used
      for every layer.
    bias_init_consts: list or loat
      the value to initialize the biases in each layer to.  The
      length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in
      which case the same value is used for every layer.
    weight_decay_penalty: float
      the magnitude of the weight decay penalty to use
    weight_decay_penalty_type: str
      the type of penalty to use for weight decay, either 'l1' or 'l2'
    dropouts: list or float
      the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    activation_fns: list or object
      the Tensorflow activation function to apply to each layer.  The length of this list should equal
      len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
      same value is used for every layer.
    n_classes: int
      the number of classes
    """
        super(MultitaskClassifier, self).__init__(**kwargs)
        self.n_tasks = n_tasks
        self.n_features = n_features
        self.n_classes = n_classes
        n_layers = len(layer_sizes)
        if not isinstance(weight_init_stddevs, collections.Sequence):
            weight_init_stddevs = [weight_init_stddevs] * n_layers
        if not isinstance(bias_init_consts, collections.Sequence):
            bias_init_consts = [bias_init_consts] * n_layers
        if not isinstance(dropouts, collections.Sequence):
            dropouts = [dropouts] * n_layers
        if not isinstance(activation_fns, collections.Sequence):
            activation_fns = [activation_fns] * n_layers

        # Add the input features.

        mol_features = Feature(shape=(None, n_features))
        prev_layer = mol_features

        # Add the dense layers

        for size, weight_stddev, bias_const, dropout, activation_fn in zip(
                layer_sizes, weight_init_stddevs, bias_init_consts, dropouts,
                activation_fns):
            layer = Dense(in_layers=[prev_layer],
                          out_channels=size,
                          activation_fn=activation_fn,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=weight_stddev),
                          biases_initializer=TFWrapper(tf.constant_initializer,
                                                       value=bias_const))
            if dropout > 0.0:
                layer = Dropout(dropout, in_layers=[layer])
            prev_layer = layer

        # Compute the loss function for each label.
        self.neural_fingerprint = prev_layer

        logits = Reshape(shape=(-1, n_tasks, n_classes),
                         in_layers=[
                             Dense(in_layers=[prev_layer],
                                   out_channels=n_tasks * n_classes)
                         ])
        output = SoftMax(logits)
        self.add_output(output)
        labels = Label(shape=(None, n_tasks, n_classes))
        weights = Weights(shape=(None, n_tasks))
        loss = SoftMaxCrossEntropy(in_layers=[labels, logits])
        weighted_loss = WeightedError(in_layers=[loss, weights])
        if weight_decay_penalty != 0.0:
            weighted_loss = WeightDecay(weight_decay_penalty,
                                        weight_decay_penalty_type,
                                        in_layers=[weighted_loss])
        self.set_loss(weighted_loss)
Example #9
0
def graph_conv_net(batch_size, prior, num_task):
    """
    Build a tensorgraph for multilabel classification task

    Return: features and labels layers
    """
    tg = TensorGraph(use_queue=False)
    if prior == True:
        add_on = num_task
    else:
        add_on = 0
    atom_features = Feature(shape=(None, 75 + 2 * add_on))
    circular_features = Feature(shape=(batch_size, 256), dtype=tf.float32)

    degree_slice = Feature(shape=(None, 2), dtype=tf.int32)
    membership = Feature(shape=(None, ), dtype=tf.int32)
    deg_adjs = []
    for i in range(0, 10 + 1):
        deg_adj = Feature(shape=(None, i + 1), dtype=tf.int32)
        deg_adjs.append(deg_adj)

    gc1 = GraphConv(64 + add_on,
                    activation_fn=tf.nn.elu,
                    in_layers=[atom_features, degree_slice, membership] +
                    deg_adjs)
    batch_norm1 = BatchNorm(in_layers=[gc1])
    gp1 = GraphPool(in_layers=[batch_norm1, degree_slice, membership] +
                    deg_adjs)

    gc2 = GraphConv(64 + add_on,
                    activation_fn=tf.nn.elu,
                    in_layers=[gc1, degree_slice, membership] + deg_adjs)
    batch_norm2 = BatchNorm(in_layers=[gc2])
    gp2 = GraphPool(in_layers=[batch_norm2, degree_slice, membership] +
                    deg_adjs)

    add = Concat(in_layers=[gp1, gp2])
    add = Dropout(0.5, in_layers=[add])
    dense = Dense(out_channels=128, activation_fn=tf.nn.elu, in_layers=[add])
    batch_norm3 = BatchNorm(in_layers=[dense])
    readout = GraphGather(batch_size=batch_size,
                          activation_fn=tf.nn.tanh,
                          in_layers=[batch_norm3, degree_slice, membership] +
                          deg_adjs)
    batch_norm4 = BatchNorm(in_layers=[readout])

    dense1 = Dense(out_channels=128,
                   activation_fn=tf.nn.elu,
                   in_layers=[circular_features])
    dense1 = BatchNorm(in_layers=[dense1])
    dense1 = Dropout(0.5, in_layers=[dense1])
    dense1 = Dense(out_channels=128,
                   activation_fn=tf.nn.elu,
                   in_layers=[circular_features])
    dense1 = BatchNorm(in_layers=[dense1])
    dense1 = Dropout(0.5, in_layers=[dense1])
    merge_feat = Concat(in_layers=[dense1, batch_norm4])
    merge = Dense(out_channels=256,
                  activation_fn=tf.nn.elu,
                  in_layers=[merge_feat])
    costs = []
    labels = []
    for task in range(num_task):
        classification = Dense(out_channels=2,
                               activation_fn=None,
                               in_layers=[merge])
        softmax = SoftMax(in_layers=[classification])
        tg.add_output(softmax)
        label = Label(shape=(None, 2))
        labels.append(label)
        cost = SoftMaxCrossEntropy(in_layers=[label, classification])
        costs.append(cost)
    all_cost = Stack(in_layers=costs, axis=1)
    weights = Weights(shape=(None, num_task))
    loss = WeightedError(in_layers=[all_cost, weights])
    tg.set_loss(loss)
    #if prior == True:
    #    return tg, atom_features,circular_features, degree_slice, membership, deg_adjs, labels, weights#, prior_layer
    return tg, atom_features, circular_features, degree_slice, membership, deg_adjs, labels, weights
Example #10
0
  def build_graph(self):
    """
    Building graph structures:
    """
    self.atom_features = Feature(shape=(None, 75))
    self.degree_slice = Feature(shape=(None, 2), dtype=tf.int32)
    self.membership = Feature(shape=(None,), dtype=tf.int32)

    self.deg_adjs = []
    for i in range(0, 10 + 1):
      deg_adj = Feature(shape=(None, i + 1), dtype=tf.int32)
      self.deg_adjs.append(deg_adj)
    gc1 = GraphConv(
        64,
        activation_fn=tf.nn.relu,
        in_layers=[self.atom_features, self.degree_slice, self.membership] +
        self.deg_adjs)
    batch_norm1 = BatchNorm(in_layers=[gc1])
    gp1 = GraphPool(in_layers=[batch_norm1, self.degree_slice, self.membership]
                    + self.deg_adjs)
    gc2 = GraphConv(
        64,
        activation_fn=tf.nn.relu,
        in_layers=[gp1, self.degree_slice, self.membership] + self.deg_adjs)
    batch_norm2 = BatchNorm(in_layers=[gc2])
    gp2 = GraphPool(in_layers=[batch_norm2, self.degree_slice, self.membership]
                    + self.deg_adjs)
    dense = Dense(out_channels=128, activation_fn=tf.nn.relu, in_layers=[gp2])
    batch_norm3 = BatchNorm(in_layers=[dense])
    readout = GraphGather(
        batch_size=self.batch_size,
        activation_fn=tf.nn.tanh,
        in_layers=[batch_norm3, self.degree_slice, self.membership] +
        self.deg_adjs)

    if self.error_bars == True:
      readout = Dropout(in_layers=[readout], dropout_prob=0.2)

    costs = []
    self.my_labels = []
    for task in range(self.n_tasks):
      if self.mode == 'classification':
        classification = Dense(
            out_channels=2, activation_fn=None, in_layers=[readout])

        softmax = SoftMax(in_layers=[classification])
        self.add_output(softmax)

        label = Label(shape=(None, 2))
        self.my_labels.append(label)
        cost = SoftMaxCrossEntropy(in_layers=[label, classification])
        costs.append(cost)
      if self.mode == 'regression':
        regression = Dense(
            out_channels=1, activation_fn=None, in_layers=[readout])
        self.add_output(regression)

        label = Label(shape=(None, 1))
        self.my_labels.append(label)
        cost = L2Loss(in_layers=[label, regression])
        costs.append(cost)
    if self.mode == "classification":
      entropy = Concat(in_layers=costs, axis=-1)
    elif self.mode == "regression":
      entropy = Stack(in_layers=costs, axis=1)
    self.my_task_weights = Weights(shape=(None, self.n_tasks))
    loss = WeightedError(in_layers=[entropy, self.my_task_weights])
    self.set_loss(loss)
Example #11
0
    def build_graph(self):
        """
    Building graph structures:
    """
        self.atom_features = Feature(shape=(None, self.number_atom_features))
        self.degree_slice = Feature(shape=(None, 2), dtype=tf.int32)
        self.membership = Feature(shape=(None, ), dtype=tf.int32)

        self.deg_adjs = []
        for i in range(0, 10 + 1):
            deg_adj = Feature(shape=(None, i + 1), dtype=tf.int32)
            self.deg_adjs.append(deg_adj)
        in_layer = self.atom_features
        for layer_size, dropout in zip(self.graph_conv_layers, self.dropout):
            gc1_in = [in_layer, self.degree_slice, self.membership
                      ] + self.deg_adjs
            gc1 = GraphConv(layer_size,
                            activation_fn=tf.nn.relu,
                            in_layers=gc1_in)
            batch_norm1 = BatchNorm(in_layers=[gc1])
            if dropout > 0.0:
                batch_norm1 = Dropout(dropout, in_layers=batch_norm1)
            gp_in = [batch_norm1, self.degree_slice, self.membership
                     ] + self.deg_adjs
            in_layer = GraphPool(in_layers=gp_in)
        dense = Dense(out_channels=self.dense_layer_size,
                      activation_fn=tf.nn.relu,
                      in_layers=[in_layer])
        batch_norm3 = BatchNorm(in_layers=[dense])
        if self.dropout[-1] > 0.0:
            batch_norm3 = Dropout(self.dropout[-1], in_layers=batch_norm3)
        readout = GraphGather(
            batch_size=self.batch_size,
            activation_fn=tf.nn.tanh,
            in_layers=[batch_norm3, self.degree_slice, self.membership] +
            self.deg_adjs)

        n_tasks = self.n_tasks
        weights = Weights(shape=(None, n_tasks))
        if self.mode == 'classification':
            n_classes = self.n_classes
            labels = Label(shape=(None, n_tasks, n_classes))
            logits = Reshape(shape=(None, n_tasks, n_classes),
                             in_layers=[
                                 Dense(in_layers=readout,
                                       out_channels=n_tasks * n_classes)
                             ])
            logits = TrimGraphOutput([logits, weights])
            output = SoftMax(logits)
            self.add_output(output)
            loss = SoftMaxCrossEntropy(in_layers=[labels, logits])
            weighted_loss = WeightedError(in_layers=[loss, weights])
            self.set_loss(weighted_loss)
        else:
            labels = Label(shape=(None, n_tasks))
            output = Reshape(
                shape=(None, n_tasks),
                in_layers=[Dense(in_layers=readout, out_channels=n_tasks)])
            output = TrimGraphOutput([output, weights])
            self.add_output(output)
            if self.uncertainty:
                log_var = Reshape(
                    shape=(None, n_tasks),
                    in_layers=[Dense(in_layers=readout, out_channels=n_tasks)])
                log_var = TrimGraphOutput([log_var, weights])
                var = Exp(log_var)
                self.add_variance(var)
                diff = labels - output
                weighted_loss = weights * (diff * diff / var + log_var)
                weighted_loss = ReduceSum(ReduceMean(weighted_loss, axis=[1]))
            else:
                weighted_loss = ReduceSum(
                    L2Loss(in_layers=[labels, output, weights]))
            self.set_loss(weighted_loss)
Example #12
0
    def __init__(self,
                 n_tasks,
                 n_features,
                 layer_sizes=[1000],
                 weight_init_stddevs=[0.02],
                 bias_init_consts=[1.0],
                 weight_decay_penalty=0.0,
                 weight_decay_penalty_type="l2",
                 dropouts=[0.5],
                 n_classes=2,
                 **kwargs):
        """Create a TensorGraphMultiTaskClassifier.

    In addition to the following arguments, this class also accepts all the keywork arguments
    from TensorGraph.

    Parameters
    ----------
    n_tasks: int
      number of tasks
    n_features: int
      number of features
    layer_sizes: list
      the size of each dense layer in the network.  The length of this list determines the number of layers.
    weight_init_stddevs: list
      the standard deviation of the distribution to use for weight initialization of each layer.  The length
      of this list should equal len(layer_sizes).
    bias_init_consts: list
      the value to initialize the biases in each layer to.  The length of this list should equal len(layer_sizes).
    weight_decay_penalty: float
      the magnitude of the weight decay penalty to use
    weight_decay_penalty_type: str
      the type of penalty to use for weight decay, either 'l1' or 'l2'
    dropouts: list
      the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
    n_classes: int
      the number of classes
    """
        super(TensorGraphMultiTaskClassifier,
              self).__init__(mode='classification', **kwargs)
        self.n_tasks = n_tasks
        self.n_features = n_features
        self.n_classes = n_classes

        # Add the input features.

        mol_features = Feature(shape=(None, n_features))
        prev_layer = mol_features

        # Add the dense layers

        for size, weight_stddev, bias_const, dropout in zip(
                layer_sizes, weight_init_stddevs, bias_init_consts, dropouts):
            layer = Dense(in_layers=[prev_layer],
                          out_channels=size,
                          activation_fn=tf.nn.relu,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=weight_stddev),
                          biases_initializer=TFWrapper(tf.constant_initializer,
                                                       value=bias_const))
            if dropout > 0.0:
                layer = Dropout(dropout, in_layers=[layer])
            prev_layer = layer

        # Compute the loss function for each label.

        output = Reshape(shape=(-1, n_tasks, n_classes),
                         in_layers=[
                             Dense(in_layers=[prev_layer],
                                   out_channels=n_tasks * n_classes)
                         ])
        self.add_output(output)
        labels = Label(shape=(None, n_tasks, n_classes))
        weights = Weights(shape=(None, n_tasks))
        loss = SoftMaxCrossEntropy(in_layers=[labels, output])
        weighted_loss = WeightedError(in_layers=[loss, weights])
        if weight_decay_penalty != 0.0:
            weighted_loss = WeightDecay(weight_decay_penalty,
                                        weight_decay_penalty_type,
                                        in_layers=[weighted_loss])
        self.set_loss(weighted_loss)
Example #13
0
    def build_graph(self):
        self.atom_features = Feature(shape=(None, self.n_atom_feat))
        self.pair_features = Feature(shape=(None, self.n_pair_feat))
        self.pair_split = Feature(shape=(None, ), dtype=tf.int32)
        self.atom_split = Feature(shape=(None, ), dtype=tf.int32)
        self.atom_to_pair = Feature(shape=(None, 2), dtype=tf.int32)
        weave_layer1A, weave_layer1P = WeaveLayerFactory(
            n_atom_input_feat=self.n_atom_feat,
            n_pair_input_feat=self.n_pair_feat,
            n_atom_output_feat=self.n_hidden[0],
            n_pair_output_feat=self.n_hidden[0],
            in_layers=[
                self.atom_features, self.pair_features, self.pair_split,
                self.atom_to_pair
            ])
        for myind in range(1, len(self.n_hidden) - 1):
            weave_layer1A, weave_layer1P = WeaveLayerFactory(
                n_atom_input_feat=self.n_hidden[myind - 1],
                n_pair_input_feat=self.n_hidden[myind - 1],
                n_atom_output_feat=self.n_hidden[myind],
                n_pair_output_feat=self.n_hidden[myind],
                update_pair=True,
                in_layers=[
                    weave_layer1A, weave_layer1P, self.pair_split,
                    self.atom_to_pair
                ])
        if len(self.n_hidden) > 1.5:
            myind = len(self.n_hidden) - 1
            weave_layer1A, weave_layer1P = WeaveLayerFactory(
                n_atom_input_feat=self.n_hidden[myind - 1],
                n_pair_input_feat=self.n_hidden[myind - 1],
                n_atom_output_feat=self.n_hidden[myind],
                n_pair_output_feat=self.n_hidden[myind],
                update_pair=False,
                in_layers=[
                    weave_layer1A, weave_layer1P, self.pair_split,
                    self.atom_to_pair
                ])
        dense1 = Dense(out_channels=self.n_graph_feat[0],
                       activation_fn=tf.nn.tanh,
                       in_layers=weave_layer1A)
        #batch_norm1 = BatchNormalization(epsilon=1e-5, mode=1, in_layers=[dense1])
        batch_norm1 = MyBatchNorm(in_layers=[dense1])
        weave_gather = WeaveGather(self.batch_size,
                                   n_input=self.n_graph_feat[0],
                                   gaussian_expand=False,
                                   in_layers=[batch_norm1, self.atom_split])

        weave_gatherBatchNorm2 = MyBatchNorm(in_layers=[weave_gather])
        curLayer = weave_gatherBatchNorm2
        for myind in range(1, len(self.n_graph_feat) - 1):
            curLayer = Dense(out_channels=self.n_graph_feat[myind],
                             activation_fn=tf.nn.relu,
                             in_layers=[curLayer])
            curLayer = Dropout(self.dropout, in_layers=[curLayer])

        classification = Dense(out_channels=self.n_tasks,
                               activation_fn=None,
                               in_layers=[curLayer])
        sigmoid = MySigmoid(in_layers=[classification])
        self.add_output(sigmoid)

        self.label = Label(shape=(None, self.n_tasks))
        all_cost = MySigmoidCrossEntropy(
            in_layers=[self.label, classification])
        self.weights = Weights(shape=(None, self.n_tasks))
        loss = WeightedError(in_layers=[all_cost, self.weights])
        self.set_loss(loss)

        self.mydense1 = dense1
        self.mybatch_norm1 = batch_norm1
        self.myweave_gather = weave_gather
        self.myclassification = classification
        self.mysigmoid = sigmoid
        self.myall_cost = all_cost
        self.myloss = loss
    deg_adjs.append(deg_adj)

label15 = []
for ts in range(ntask):
    label_t = Label(shape=(None, 2))
    label15.append(label_t)

## Setup Graph Convolution Network
tg = TensorGraph(use_queue=False, learning_rate=0.001, model_dir='ckpt')

gc1 = GraphConv(64,
                activation_fn=tf.nn.relu,
                in_layers=[atom_features, degree_slice, membership] + deg_adjs)
bn1 = BatchNorm(in_layers=[gc1])
gp1 = GraphPool(in_layers=[bn1, degree_slice, membership] + deg_adjs)
dp1 = Dropout(0.2, in_layers=gp1)

gc2 = GraphConv(64,
                activation_fn=tf.nn.relu,
                in_layers=[dp1, degree_slice, membership] + deg_adjs)
bn2 = BatchNorm(in_layers=[gc2])
gp2 = GraphPool(in_layers=[bn2, degree_slice, membership] + deg_adjs)
dp2 = Dropout(0.5, in_layers=gp2)

gc3 = GraphConv(64,
                activation_fn=tf.nn.relu,
                in_layers=[dp2, degree_slice, membership] + deg_adjs)
bn3 = BatchNorm(in_layers=[gc3])
gp3 = GraphPool(in_layers=[b3, degree_slice, membership] + deg_adjs)
dp3 = Dropout(0.5, in_layers=gp3)
Example #15
0
    def __init__(self,
                 n_tasks,
                 n_features,
                 alpha_init_stddevs=0.02,
                 layer_sizes=[1000],
                 weight_init_stddevs=0.02,
                 bias_init_consts=1.0,
                 weight_decay_penalty=0.0,
                 weight_decay_penalty_type="l2",
                 dropouts=0.5,
                 activation_fns=tf.nn.relu,
                 **kwargs):
        """Creates a progressive network.
  
    Only listing parameters specific to progressive networks here.

    Parameters
    ----------
    n_tasks: int
      Number of tasks
    n_features: int
      Number of input features
    alpha_init_stddevs: list
      List of standard-deviations for alpha in adapter layers.
    layer_sizes: list
      the size of each dense layer in the network.  The length of this list determines the number of layers.
    weight_init_stddevs: list or float
      the standard deviation of the distribution to use for weight initialization of each layer.  The length
      of this list should equal len(layer_sizes)+1.  The final element corresponds to the output layer.
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    bias_init_consts: list or float
      the value to initialize the biases in each layer to.  The length of this list should equal len(layer_sizes)+1.
      The final element corresponds to the output layer.  Alternatively this may be a single value instead of a list,
      in which case the same value is used for every layer.
    weight_decay_penalty: float
      the magnitude of the weight decay penalty to use
    weight_decay_penalty_type: str
      the type of penalty to use for weight decay, either 'l1' or 'l2'
    dropouts: list or float
      the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    activation_fns: list or object
      the Tensorflow activation function to apply to each layer.  The length of this list should equal
      len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
      same value is used for every layer.
    """

        super(ProgressiveMultitaskRegressor, self).__init__(**kwargs)
        self.n_tasks = n_tasks
        self.n_features = n_features
        self.layer_sizes = layer_sizes
        self.alpha_init_stddevs = alpha_init_stddevs
        self.weight_init_stddevs = weight_init_stddevs
        self.bias_init_consts = bias_init_consts
        self.dropouts = dropouts
        self.activation_fns = activation_fns

        n_layers = len(layer_sizes)
        if not isinstance(weight_init_stddevs, collections.Sequence):
            self.weight_init_stddevs = [weight_init_stddevs] * n_layers
        if not isinstance(alpha_init_stddevs, collections.Sequence):
            self.alpha_init_stddevs = [alpha_init_stddevs] * n_layers
        if not isinstance(bias_init_consts, collections.Sequence):
            self.bias_init_consts = [bias_init_consts] * n_layers
        if not isinstance(dropouts, collections.Sequence):
            self.dropouts = [dropouts] * n_layers
        if not isinstance(activation_fns, collections.Sequence):
            self.activation_fns = [activation_fns] * n_layers

        # Add the input features.
        self.mol_features = Feature(shape=(None, n_features))

        all_layers = {}
        outputs = []
        for task in range(self.n_tasks):
            task_layers = []
            for i in range(n_layers):
                if i == 0:
                    prev_layer = self.mol_features
                else:
                    prev_layer = all_layers[(i - 1, task)]
                    if task > 0:
                        lateral_contrib, trainables = self.add_adapter(
                            all_layers, task, i)
                        task_layers.extend(trainables)

                layer = Dense(in_layers=[prev_layer],
                              out_channels=layer_sizes[i],
                              activation_fn=None,
                              weights_initializer=TFWrapper(
                                  tf.truncated_normal_initializer,
                                  stddev=self.weight_init_stddevs[i]),
                              biases_initializer=TFWrapper(
                                  tf.constant_initializer,
                                  value=self.bias_init_consts[i]))
                task_layers.append(layer)

                if i > 0 and task > 0:
                    layer = layer + lateral_contrib
                assert self.activation_fns[
                    i] is tf.nn.relu, "Only ReLU is supported"
                layer = ReLU(in_layers=[layer])
                if self.dropouts[i] > 0.0:
                    layer = Dropout(self.dropouts[i], in_layers=[layer])
                all_layers[(i, task)] = layer

            prev_layer = all_layers[(n_layers - 1, task)]
            layer = Dense(in_layers=[prev_layer],
                          out_channels=1,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=self.weight_init_stddevs[-1]),
                          biases_initializer=TFWrapper(
                              tf.constant_initializer,
                              value=self.bias_init_consts[-1]))
            task_layers.append(layer)

            if task > 0:
                lateral_contrib, trainables = self.add_adapter(
                    all_layers, task, n_layers)
                task_layers.extend(trainables)
                layer = layer + lateral_contrib
            outputs.append(layer)
            self.add_output(layer)
            task_label = Label(shape=(None, 1))
            task_weight = Weights(shape=(None, 1))
            weighted_loss = ReduceSum(
                L2Loss(in_layers=[task_label, layer, task_weight]))
            self.create_submodel(layers=task_layers,
                                 loss=weighted_loss,
                                 optimizer=None)
        # Weight decay not activated
        """
Example #16
0
    def __init__(self,
                 n_tasks,
                 n_features,
                 layer_sizes=[1000],
                 weight_init_stddevs=0.02,
                 bias_init_consts=1.0,
                 weight_decay_penalty=0.0,
                 weight_decay_penalty_type="l2",
                 dropouts=0.5,
                 activation_fns=tf.nn.relu,
                 bypass_layer_sizes=[100],
                 bypass_weight_init_stddevs=[.02],
                 bypass_bias_init_consts=[1.],
                 bypass_dropouts=[.5],
                 **kwargs):
        """ Create a RobustMultitaskRegressor.

    Parameters
    ----------
    n_tasks: int
      number of tasks
    n_features: int
      number of features
    layer_sizes: list
      the size of each dense layer in the network.  The length of this list determines the number of layers.
    weight_init_stddevs: list or float
      the standard deviation of the distribution to use for weight initialization of each layer.  The length
      of this list should equal len(layer_sizes).  Alternatively this may be a single value instead of a list,
      in which case the same value is used for every layer.
    bias_init_consts: list or loat
      the value to initialize the biases in each layer to.  The length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    weight_decay_penalty: float
      the magnitude of the weight decay penalty to use
    weight_decay_penalty_type: str
      the type of penalty to use for weight decay, either 'l1' or 'l2'
    dropouts: list or float
      the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    activation_fns: list or object
      the Tensorflow activation function to apply to each layer.  The length of this list should equal
      len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
      same value is used for every layer.
    bypass_layer_sizes: list
      the size of each dense layer in the bypass network. The length of this list determines the number of bypass layers.
    bypass_weight_init_stddevs: list or float
      the standard deviation of the distribution to use for weight initialization of bypass layers.
      same requirements as weight_init_stddevs
    bypass_bias_init_consts: list or float
      the value to initialize the biases in bypass layers
      same requirements as bias_init_consts
    bypass_dropouts: list or float
      the dropout probablity to use for bypass layers.
      same requirements as dropouts
    """
        super(RobustMultitaskRegressor, self).__init__(**kwargs)
        self.n_tasks = n_tasks
        self.n_features = n_features
        n_layers = len(layer_sizes)
        if not isinstance(weight_init_stddevs, collections.Sequence):
            weight_init_stddevs = [weight_init_stddevs] * n_layers
        if not isinstance(bias_init_consts, collections.Sequence):
            bias_init_consts = [bias_init_consts] * n_layers
        if not isinstance(dropouts, collections.Sequence):
            dropouts = [dropouts] * n_layers
        if not isinstance(activation_fns, collections.Sequence):
            activation_fns = [activation_fns] * n_layers

        n_bypass_layers = len(bypass_layer_sizes)
        if not isinstance(bypass_weight_init_stddevs, collections.Sequence):
            bypass_weight_init_stddevs = [bypass_weight_init_stddevs
                                          ] * n_bypass_layers
        if not isinstance(bypass_bias_init_consts, collections.Sequence):
            bypass_bias_init_consts = [bypass_bias_init_consts
                                       ] * n_bypass_layers
        if not isinstance(bypass_dropouts, collections.Sequence):
            bypass_dropouts = [bypass_dropouts] * n_bypass_layers
        bypass_activation_fns = [activation_fns[0]] * n_bypass_layers

        # Add the input features.
        mol_features = Feature(shape=(None, n_features))
        prev_layer = mol_features

        # Add the shared dense layers
        for size, weight_stddev, bias_const, dropout, activation_fn in zip(
                layer_sizes, weight_init_stddevs, bias_init_consts, dropouts,
                activation_fns):
            layer = Dense(in_layers=[prev_layer],
                          out_channels=size,
                          activation_fn=activation_fn,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=weight_stddev),
                          biases_initializer=TFWrapper(tf.constant_initializer,
                                                       value=bias_const))
            if dropout > 0.0:
                layer = Dropout(dropout, in_layers=[layer])
            prev_layer = layer
        top_multitask_layer = prev_layer

        task_outputs = []
        for i in range(self.n_tasks):
            prev_layer = mol_features
            # Add task-specific bypass layers
            for size, weight_stddev, bias_const, dropout, activation_fn in zip(
                    bypass_layer_sizes, bypass_weight_init_stddevs,
                    bypass_bias_init_consts, bypass_dropouts,
                    bypass_activation_fns):
                layer = Dense(in_layers=[prev_layer],
                              out_channels=size,
                              activation_fn=activation_fn,
                              weights_initializer=TFWrapper(
                                  tf.truncated_normal_initializer,
                                  stddev=weight_stddev),
                              biases_initializer=TFWrapper(
                                  tf.constant_initializer, value=bias_const))
                if dropout > 0.0:
                    layer = Dropout(dropout, in_layers=[layer])
                prev_layer = layer
            top_bypass_layer = prev_layer

            if n_bypass_layers > 0:
                task_layer = Concat(
                    axis=1, in_layers=[top_multitask_layer, top_bypass_layer])
            else:
                task_layer = top_multitask_layer

            task_out = Dense(in_layers=[task_layer], out_channels=1)
            task_outputs.append(task_out)

        output = Concat(axis=1, in_layers=task_outputs)

        self.add_output(output)
        labels = Label(shape=(None, n_tasks))
        weights = Weights(shape=(None, n_tasks))
        weighted_loss = ReduceSum(L2Loss(in_layers=[labels, output, weights]))
        if weight_decay_penalty != 0.0:
            weighted_loss = WeightDecay(weight_decay_penalty,
                                        weight_decay_penalty_type,
                                        in_layers=[weighted_loss])
        self.set_loss(weighted_loss)
Example #17
0
    def __init__(self,
                 n_tasks,
                 n_features,
                 layer_sizes=[1000],
                 weight_init_stddevs=0.02,
                 bias_init_consts=1.0,
                 weight_decay_penalty=0.0,
                 weight_decay_penalty_type="l2",
                 dropouts=0.5,
                 activation_fns=tf.nn.relu,
                 uncertainty=False,
                 **kwargs):
        """Create a MultitaskRegressor.

    In addition to the following arguments, this class also accepts all the keywork arguments
    from TensorGraph.

    Parameters
    ----------
    n_tasks: int
      number of tasks
    n_features: int
      number of features
    layer_sizes: list
      the size of each dense layer in the network.  The length of this list determines the number of layers.
    weight_init_stddevs: list or float
      the standard deviation of the distribution to use for weight initialization of each layer.  The length
      of this list should equal len(layer_sizes)+1.  The final element corresponds to the output layer.
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    bias_init_consts: list or float
      the value to initialize the biases in each layer to.  The length of this list should equal len(layer_sizes)+1.
      The final element corresponds to the output layer.  Alternatively this may be a single value instead of a list,
      in which case the same value is used for every layer.
    weight_decay_penalty: float
      the magnitude of the weight decay penalty to use
    weight_decay_penalty_type: str
      the type of penalty to use for weight decay, either 'l1' or 'l2'
    dropouts: list or float
      the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    activation_fns: list or object
      the Tensorflow activation function to apply to each layer.  The length of this list should equal
      len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
      same value is used for every layer.
    uncertainty: bool
      if True, include extra outputs and loss terms to enable the uncertainty
      in outputs to be predicted
    """
        super(MultitaskRegressor, self).__init__(**kwargs)
        self.n_tasks = n_tasks
        self.n_features = n_features
        n_layers = len(layer_sizes)
        if not isinstance(weight_init_stddevs, collections.Sequence):
            weight_init_stddevs = [weight_init_stddevs] * (n_layers + 1)
        if not isinstance(bias_init_consts, collections.Sequence):
            bias_init_consts = [bias_init_consts] * (n_layers + 1)
        if not isinstance(dropouts, collections.Sequence):
            dropouts = [dropouts] * n_layers
        if not isinstance(activation_fns, collections.Sequence):
            activation_fns = [activation_fns] * n_layers
        if uncertainty:
            if any(d == 0.0 for d in dropouts):
                raise ValueError(
                    'Dropout must be included in every layer to predict uncertainty'
                )

        # Add the input features.

        mol_features = Feature(shape=(None, n_features))
        prev_layer = mol_features

        # Add the dense layers

        for size, weight_stddev, bias_const, dropout, activation_fn in zip(
                layer_sizes, weight_init_stddevs, bias_init_consts, dropouts,
                activation_fns):
            layer = Dense(in_layers=[prev_layer],
                          out_channels=size,
                          activation_fn=activation_fn,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=weight_stddev),
                          biases_initializer=TFWrapper(tf.constant_initializer,
                                                       value=bias_const))
            if dropout > 0.0:
                layer = Dropout(dropout, in_layers=[layer])
            prev_layer = layer
        self.neural_fingerprint = prev_layer

        # Compute the loss function for each label.

        output = Reshape(shape=(-1, n_tasks, 1),
                         in_layers=[
                             Dense(in_layers=[prev_layer],
                                   out_channels=n_tasks,
                                   weights_initializer=TFWrapper(
                                       tf.truncated_normal_initializer,
                                       stddev=weight_init_stddevs[-1]),
                                   biases_initializer=TFWrapper(
                                       tf.constant_initializer,
                                       value=bias_init_consts[-1]))
                         ])
        self.add_output(output)
        labels = Label(shape=(None, n_tasks, 1))
        weights = Weights(shape=(None, n_tasks, 1))
        if uncertainty:
            log_var = Reshape(
                shape=(-1, n_tasks, 1),
                in_layers=[
                    Dense(in_layers=[prev_layer],
                          out_channels=n_tasks,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=weight_init_stddevs[-1]),
                          biases_initializer=TFWrapper(tf.constant_initializer,
                                                       value=0.0))
                ])
            var = Exp(log_var)
            self.add_variance(var)
            diff = labels - output
            weighted_loss = weights * (diff * diff / var + log_var)
            weighted_loss = ReduceSum(ReduceMean(weighted_loss, axis=[1, 2]))
        else:
            weighted_loss = ReduceSum(
                L2Loss(in_layers=[labels, output, weights]))
        if weight_decay_penalty != 0.0:
            weighted_loss = WeightDecay(weight_decay_penalty,
                                        weight_decay_penalty_type,
                                        in_layers=[weighted_loss])
        self.set_loss(weighted_loss)