Example #1
0
def test_Exp_pickle():
  tg = TensorGraph()
  feature = Feature(shape=(tg.batch_size, 1))
  layer = Exp(feature)
  tg.add_output(layer)
  tg.set_loss(layer)
  tg.build()
  tg.save()
    def build_graph(self):

        self.atom_numbers = Feature(shape=(None, self.max_atoms),
                                    dtype=tf.int32)
        self.atom_flags = Feature(shape=(None,
                                         self.max_atoms * self.max_atoms))
        self.atom_feats = Feature(shape=(None, self.max_atoms * 4))

        reshaped_atom_flags = Reshape(in_layers=[self.atom_flags],
                                      shape=(-1, self.max_atoms,
                                             self.max_atoms))
        reshaped_atom_feats = Reshape(in_layers=[self.atom_feats],
                                      shape=(-1, self.max_atoms, 4))

        previous_layer = ANIFeat(in_layers=reshaped_atom_feats,
                                 max_atoms=self.max_atoms)

        self.featurized = previous_layer

        Hiddens = []
        for n_hidden in self.layer_structures:
            Hidden = AtomicDifferentiatedDense(
                self.max_atoms,
                n_hidden,
                self.atom_number_cases,
                activation=self.activation_fn,
                in_layers=[previous_layer, self.atom_numbers])
            Hiddens.append(Hidden)
            previous_layer = Hiddens[-1]

        regression = Dense(out_channels=1 * self.n_tasks,
                           activation_fn=None,
                           in_layers=[Hiddens[-1]])
        output = BPGather(self.max_atoms,
                          in_layers=[regression, reshaped_atom_flags])
        self.add_output(output)

        label = Label(shape=(None, self.n_tasks, 1))
        loss = ReduceSum(L2Loss(in_layers=[label, output]))
        weights = Weights(shape=(None, self.n_tasks))

        weighted_loss = WeightedError(in_layers=[loss, weights])
        if self.exp_loss:
            weighted_loss = Exp(in_layers=[weighted_loss])
        self.set_loss(weighted_loss)
Example #3
0
    def build_graph(self):

        self.atom_numbers = Feature(shape=(None, self.max_atoms),
                                    dtype=tf.int32)
        self.atom_flags = Feature(shape=(None, self.max_atoms, self.max_atoms))
        self.atom_feats = Feature(shape=(None, self.max_atoms, 4))

        previous_layer = ANIFeat(in_layers=self.atom_feats,
                                 max_atoms=self.max_atoms)

        self.featurized = previous_layer

        Hiddens = []
        for n_hidden in self.layer_structures:
            Hidden = AtomicDifferentiatedDense(
                self.max_atoms,
                n_hidden,
                self.atom_number_cases,
                activation=self.activation_fn,
                in_layers=[previous_layer, self.atom_numbers])
            Hiddens.append(Hidden)
            previous_layer = Hiddens[-1]

        costs = []
        self.labels_fd = []
        for task in range(self.n_tasks):
            regression = Dense(out_channels=1,
                               activation_fn=None,
                               in_layers=[Hiddens[-1]])
            output = BPGather(self.max_atoms,
                              in_layers=[regression, self.atom_flags])
            self.add_output(output)

            label = Label(shape=(None, 1))
            self.labels_fd.append(label)
            cost = L2Loss(in_layers=[label, output])
            costs.append(cost)

        all_cost = Stack(in_layers=costs, axis=1)
        self.weights = Weights(shape=(None, self.n_tasks))
        loss = WeightedError(in_layers=[all_cost, self.weights])
        if self.exp_loss:
            loss = Exp(in_layers=[loss])
        self.set_loss(loss)
Example #4
0
 def test_exp(self):
     """Test that Exp can be invoked."""
     value = np.random.uniform(size=(2, 3)).astype(np.float32)
     with self.session() as sess:
         result = Exp()(value).eval()
         assert np.array_equal(np.exp(value), result)
Example #5
0
    def build_graph(self):
        # Build placeholders
        self.atom_features = Feature(shape=(None, self.n_atom_feat))
        self.pair_features = Feature(shape=(None, self.n_pair_feat))
        self.atom_split = Feature(shape=(None, ), dtype=tf.int32)
        self.atom_to_pair = Feature(shape=(None, 2), dtype=tf.int32)

        message_passing = MessagePassing(self.T,
                                         message_fn='enn',
                                         update_fn='gru',
                                         n_hidden=self.n_hidden,
                                         in_layers=[
                                             self.atom_features,
                                             self.pair_features,
                                             self.atom_to_pair
                                         ])

        atom_embeddings = Dense(self.n_hidden, in_layers=[message_passing])

        mol_embeddings = SetGather(
            self.M,
            self.batch_size,
            n_hidden=self.n_hidden,
            in_layers=[atom_embeddings, self.atom_split])

        dense1 = Dense(out_channels=2 * self.n_hidden,
                       activation_fn=tf.nn.relu,
                       in_layers=[mol_embeddings])

        n_tasks = self.n_tasks
        weights = Weights(shape=(None, n_tasks))
        if self.mode == 'classification':
            n_classes = self.n_classes
            labels = Label(shape=(None, n_tasks, n_classes))
            logits = Reshape(shape=(None, n_tasks, n_classes),
                             in_layers=[
                                 Dense(in_layers=dense1,
                                       out_channels=n_tasks * n_classes)
                             ])
            logits = TrimGraphOutput([logits, weights])
            output = SoftMax(logits)
            self.add_output(output)
            loss = SoftMaxCrossEntropy(in_layers=[labels, logits])
            weighted_loss = WeightedError(in_layers=[loss, weights])
            self.set_loss(weighted_loss)
        else:
            labels = Label(shape=(None, n_tasks))
            output = Reshape(
                shape=(None, n_tasks),
                in_layers=[Dense(in_layers=dense1, out_channels=n_tasks)])
            output = TrimGraphOutput([output, weights])
            self.add_output(output)
            if self.uncertainty:
                log_var = Reshape(
                    shape=(None, n_tasks),
                    in_layers=[Dense(in_layers=dense1, out_channels=n_tasks)])
                log_var = TrimGraphOutput([log_var, weights])
                var = Exp(log_var)
                self.add_variance(var)
                diff = labels - output
                weighted_loss = weights * (diff * diff / var + log_var)
                weighted_loss = ReduceSum(ReduceMean(weighted_loss, axis=[1]))
            else:
                weighted_loss = ReduceSum(
                    L2Loss(in_layers=[labels, output, weights]))
            self.set_loss(weighted_loss)
Example #6
0
    def build_graph(self):
        """
    Building graph structures:
    """
        self.atom_features = Feature(shape=(None, self.number_atom_features))
        self.degree_slice = Feature(shape=(None, 2), dtype=tf.int32)
        self.membership = Feature(shape=(None, ), dtype=tf.int32)

        self.deg_adjs = []
        for i in range(0, 10 + 1):
            deg_adj = Feature(shape=(None, i + 1), dtype=tf.int32)
            self.deg_adjs.append(deg_adj)
        in_layer = self.atom_features
        for layer_size, dropout in zip(self.graph_conv_layers, self.dropout):
            gc1_in = [in_layer, self.degree_slice, self.membership
                      ] + self.deg_adjs
            gc1 = GraphConv(layer_size,
                            activation_fn=tf.nn.relu,
                            in_layers=gc1_in)
            batch_norm1 = BatchNorm(in_layers=[gc1])
            if dropout > 0.0:
                batch_norm1 = Dropout(dropout, in_layers=batch_norm1)
            gp_in = [batch_norm1, self.degree_slice, self.membership
                     ] + self.deg_adjs
            in_layer = GraphPool(in_layers=gp_in)
        dense = Dense(out_channels=self.dense_layer_size,
                      activation_fn=tf.nn.relu,
                      in_layers=[in_layer])
        batch_norm3 = BatchNorm(in_layers=[dense])
        if self.dropout[-1] > 0.0:
            batch_norm3 = Dropout(self.dropout[-1], in_layers=batch_norm3)
        readout = GraphGather(
            batch_size=self.batch_size,
            activation_fn=tf.nn.tanh,
            in_layers=[batch_norm3, self.degree_slice, self.membership] +
            self.deg_adjs)

        n_tasks = self.n_tasks
        weights = Weights(shape=(None, n_tasks))
        if self.mode == 'classification':
            n_classes = self.n_classes
            labels = Label(shape=(None, n_tasks, n_classes))
            logits = Reshape(shape=(None, n_tasks, n_classes),
                             in_layers=[
                                 Dense(in_layers=readout,
                                       out_channels=n_tasks * n_classes)
                             ])
            logits = TrimGraphOutput([logits, weights])
            output = SoftMax(logits)
            self.add_output(output)
            loss = SoftMaxCrossEntropy(in_layers=[labels, logits])
            weighted_loss = WeightedError(in_layers=[loss, weights])
            self.set_loss(weighted_loss)
        else:
            labels = Label(shape=(None, n_tasks))
            output = Reshape(
                shape=(None, n_tasks),
                in_layers=[Dense(in_layers=readout, out_channels=n_tasks)])
            output = TrimGraphOutput([output, weights])
            self.add_output(output)
            if self.uncertainty:
                log_var = Reshape(
                    shape=(None, n_tasks),
                    in_layers=[Dense(in_layers=readout, out_channels=n_tasks)])
                log_var = TrimGraphOutput([log_var, weights])
                var = Exp(log_var)
                self.add_variance(var)
                diff = labels - output
                weighted_loss = weights * (diff * diff / var + log_var)
                weighted_loss = ReduceSum(ReduceMean(weighted_loss, axis=[1]))
            else:
                weighted_loss = ReduceSum(
                    L2Loss(in_layers=[labels, output, weights]))
            self.set_loss(weighted_loss)
Example #7
0
    def build_graph(self):
        """Building graph structures:
                Features => DAGLayer => DAGGather => Classification or Regression
                """
        self.atom_features = Feature(shape=(None, self.n_atom_feat))
        self.parents = Feature(shape=(None, self.max_atoms, self.max_atoms),
                               dtype=tf.int32)
        self.calculation_orders = Feature(shape=(None, self.max_atoms),
                                          dtype=tf.int32)
        self.calculation_masks = Feature(shape=(None, self.max_atoms),
                                         dtype=tf.bool)
        self.membership = Feature(shape=(None, ), dtype=tf.int32)
        self.n_atoms = Feature(shape=(), dtype=tf.int32)
        dag_layer1 = DAGLayer(n_graph_feat=self.n_graph_feat,
                              n_atom_feat=self.n_atom_feat,
                              max_atoms=self.max_atoms,
                              layer_sizes=self.layer_sizes,
                              dropout=self.dropout,
                              batch_size=self.batch_size,
                              in_layers=[
                                  self.atom_features, self.parents,
                                  self.calculation_orders,
                                  self.calculation_masks, self.n_atoms
                              ])
        dag_gather = DAGGather(n_graph_feat=self.n_graph_feat,
                               n_outputs=self.n_outputs,
                               max_atoms=self.max_atoms,
                               layer_sizes=self.layer_sizes_gather,
                               dropout=self.dropout,
                               in_layers=[dag_layer1, self.membership])

        n_tasks = self.n_tasks
        weights = Weights(shape=(None, n_tasks))
        if self.mode == 'classification':
            n_classes = self.n_classes
            labels = Label(shape=(None, n_tasks, n_classes))
            logits = Reshape(shape=(None, n_tasks, n_classes),
                             in_layers=[
                                 Dense(in_layers=dag_gather,
                                       out_channels=n_tasks * n_classes)
                             ])
            output = SoftMax(logits)
            self.add_output(output)
            loss = SoftMaxCrossEntropy(in_layers=[labels, logits])
            weighted_loss = WeightedError(in_layers=[loss, weights])
            self.set_loss(weighted_loss)
        else:
            labels = Label(shape=(None, n_tasks))
            output = Reshape(
                shape=(None, n_tasks),
                in_layers=[Dense(in_layers=dag_gather, out_channels=n_tasks)])
            self.add_output(output)
            if self.uncertainty:
                log_var = Reshape(shape=(None, n_tasks),
                                  in_layers=[
                                      Dense(in_layers=dag_gather,
                                            out_channels=n_tasks)
                                  ])
                var = Exp(log_var)
                self.add_variance(var)
                diff = labels - output
                weighted_loss = weights * (diff * diff / var + log_var)
                weighted_loss = ReduceSum(ReduceMean(weighted_loss, axis=[1]))
            else:
                weighted_loss = ReduceSum(
                    L2Loss(in_layers=[labels, output, weights]))
            self.set_loss(weighted_loss)
Example #8
0
    def __init__(self,
                 n_tasks,
                 n_features,
                 layer_sizes=[1000],
                 weight_init_stddevs=0.02,
                 bias_init_consts=1.0,
                 weight_decay_penalty=0.0,
                 weight_decay_penalty_type="l2",
                 dropouts=0.5,
                 activation_fns=tf.nn.relu,
                 uncertainty=False,
                 **kwargs):
        """Create a MultitaskRegressor.

    In addition to the following arguments, this class also accepts all the keywork arguments
    from TensorGraph.

    Parameters
    ----------
    n_tasks: int
      number of tasks
    n_features: int
      number of features
    layer_sizes: list
      the size of each dense layer in the network.  The length of this list determines the number of layers.
    weight_init_stddevs: list or float
      the standard deviation of the distribution to use for weight initialization of each layer.  The length
      of this list should equal len(layer_sizes)+1.  The final element corresponds to the output layer.
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    bias_init_consts: list or float
      the value to initialize the biases in each layer to.  The length of this list should equal len(layer_sizes)+1.
      The final element corresponds to the output layer.  Alternatively this may be a single value instead of a list,
      in which case the same value is used for every layer.
    weight_decay_penalty: float
      the magnitude of the weight decay penalty to use
    weight_decay_penalty_type: str
      the type of penalty to use for weight decay, either 'l1' or 'l2'
    dropouts: list or float
      the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    activation_fns: list or object
      the Tensorflow activation function to apply to each layer.  The length of this list should equal
      len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
      same value is used for every layer.
    uncertainty: bool
      if True, include extra outputs and loss terms to enable the uncertainty
      in outputs to be predicted
    """
        super(MultitaskRegressor, self).__init__(**kwargs)
        self.n_tasks = n_tasks
        self.n_features = n_features
        n_layers = len(layer_sizes)
        if not isinstance(weight_init_stddevs, collections.Sequence):
            weight_init_stddevs = [weight_init_stddevs] * (n_layers + 1)
        if not isinstance(bias_init_consts, collections.Sequence):
            bias_init_consts = [bias_init_consts] * (n_layers + 1)
        if not isinstance(dropouts, collections.Sequence):
            dropouts = [dropouts] * n_layers
        if not isinstance(activation_fns, collections.Sequence):
            activation_fns = [activation_fns] * n_layers
        if uncertainty:
            if any(d == 0.0 for d in dropouts):
                raise ValueError(
                    'Dropout must be included in every layer to predict uncertainty'
                )

        # Add the input features.

        mol_features = Feature(shape=(None, n_features))
        prev_layer = mol_features

        # Add the dense layers

        for size, weight_stddev, bias_const, dropout, activation_fn in zip(
                layer_sizes, weight_init_stddevs, bias_init_consts, dropouts,
                activation_fns):
            layer = Dense(in_layers=[prev_layer],
                          out_channels=size,
                          activation_fn=activation_fn,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=weight_stddev),
                          biases_initializer=TFWrapper(tf.constant_initializer,
                                                       value=bias_const))
            if dropout > 0.0:
                layer = Dropout(dropout, in_layers=[layer])
            prev_layer = layer
        self.neural_fingerprint = prev_layer

        # Compute the loss function for each label.

        output = Reshape(shape=(-1, n_tasks, 1),
                         in_layers=[
                             Dense(in_layers=[prev_layer],
                                   out_channels=n_tasks,
                                   weights_initializer=TFWrapper(
                                       tf.truncated_normal_initializer,
                                       stddev=weight_init_stddevs[-1]),
                                   biases_initializer=TFWrapper(
                                       tf.constant_initializer,
                                       value=bias_init_consts[-1]))
                         ])
        self.add_output(output)
        labels = Label(shape=(None, n_tasks, 1))
        weights = Weights(shape=(None, n_tasks, 1))
        if uncertainty:
            log_var = Reshape(
                shape=(-1, n_tasks, 1),
                in_layers=[
                    Dense(in_layers=[prev_layer],
                          out_channels=n_tasks,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=weight_init_stddevs[-1]),
                          biases_initializer=TFWrapper(tf.constant_initializer,
                                                       value=0.0))
                ])
            var = Exp(log_var)
            self.add_variance(var)
            diff = labels - output
            weighted_loss = weights * (diff * diff / var + log_var)
            weighted_loss = ReduceSum(ReduceMean(weighted_loss, axis=[1, 2]))
        else:
            weighted_loss = ReduceSum(
                L2Loss(in_layers=[labels, output, weights]))
        if weight_decay_penalty != 0.0:
            weighted_loss = WeightDecay(weight_decay_penalty,
                                        weight_decay_penalty_type,
                                        in_layers=[weighted_loss])
        self.set_loss(weighted_loss)