def test_graphcnn(self): """ Test GraphCNN Layer From https://arxiv.org/abs/1703.00792""" V = np.random.uniform(size=(10, 100, 50)).astype(np.float32) adjs = np.random.uniform(size=(10, 100, 5, 100)).astype(np.float32) with self.session() as sess: out_tensor = GraphCNN(num_filters=6)(V, adjs) sess.run(tf.global_variables_initializer()) result = out_tensor.eval() assert result.shape == (10, 100, 6)
def build_graph(self): self.vertex_features = Feature(shape=(None, self.max_atoms, 75)) self.adj_matrix = Feature(shape=(None, self.max_atoms, 1, self.max_atoms)) self.mask = Feature(shape=(None, self.max_atoms, 1)) gcnn1 = BatchNorm( GraphCNN( num_filters=64, in_layers=[self.vertex_features, self.adj_matrix, self.mask])) gcnn1 = Dropout(self.dropout, in_layers=gcnn1) gcnn2 = BatchNorm( GraphCNN(num_filters=64, in_layers=[gcnn1, self.adj_matrix, self.mask])) gcnn2 = Dropout(self.dropout, in_layers=gcnn2) gc_pool, adj_matrix = GraphCNNPool( num_vertices=32, in_layers=[gcnn2, self.adj_matrix, self.mask]) gc_pool = BatchNorm(gc_pool) gc_pool = Dropout(self.dropout, in_layers=gc_pool) gcnn3 = BatchNorm(GraphCNN(num_filters=32, in_layers=[gc_pool, adj_matrix])) gcnn3 = Dropout(self.dropout, in_layers=gcnn3) gc_pool2, adj_matrix2 = GraphCNNPool( num_vertices=8, in_layers=[gcnn3, adj_matrix]) gc_pool2 = BatchNorm(gc_pool2) gc_pool2 = Dropout(self.dropout, in_layers=gc_pool2) flattened = Flatten(in_layers=gc_pool2) readout = Dense( out_channels=256, activation_fn=tf.nn.relu, in_layers=flattened) costs = [] self.my_labels = [] for task in range(self.n_tasks): if self.mode == 'classification': classification = Dense( out_channels=2, activation_fn=None, in_layers=[readout]) softmax = SoftMax(in_layers=[classification]) self.add_output(softmax) label = Label(shape=(None, 2)) self.my_labels.append(label) cost = SoftMaxCrossEntropy(in_layers=[label, classification]) costs.append(cost) if self.mode == 'regression': regression = Dense( out_channels=1, activation_fn=None, in_layers=[readout]) self.add_output(regression) label = Label(shape=(None, 1)) self.my_labels.append(label) cost = L2Loss(in_layers=[label, regression]) costs.append(cost) if self.mode == "classification": entropy = Stack(in_layers=costs, axis=-1) elif self.mode == "regression": entropy = Stack(in_layers=costs, axis=1) self.my_task_weights = Weights(shape=(None, self.n_tasks)) loss = WeightedError(in_layers=[entropy, self.my_task_weights]) self.set_loss(loss)
def testGraphCNN_pickle(): V = Feature(shape=(None, 200, 50)) A = Feature(shape=(None, 200, 1, 200)) gcnn = GraphCNN(32, in_layers=[V, A]) tg = TensorGraph() tg.add_output(gcnn) tg.set_loss(gcnn) tg.build() tg.save()