def default_generator( self, dataset: dc.data.Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) -> Iterable[Tuple[List, List, List]]: empty: np.ndarray = np.array([]) for epoch in range(epochs): for (X_b, y_b, w_b, ids_b) in dataset.iterbatches( batch_size=self.batch_size, deterministic=deterministic, pad_batches=pad_batches): if y_b is not None: y_b = y_b.reshape(-1, self.n_tasks, 1) if X_b is not None: if mode == 'fit': for transformer in self.fit_transformers: X_b, _, _, _ = transformer.transform_array( X_b, empty, empty, empty) if mode == 'predict': dropout = np.array(0.0) else: dropout = np.array(1.0) yield ([X_b, dropout], [y_b], [w_b])
def default_generator( self, dataset: dc.data.Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) -> Iterable[Tuple[List, List, List]]: for epoch in range(epochs): for (X_b, y_b, w_b, ids_b) in dataset.iterbatches( batch_size=self.batch_size, deterministic=deterministic, pad_batches=pad_batches): yield ([X_b], [y_b], [w_b])
def default_generator( self, dataset: dc.data.Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) -> Iterable[Tuple[List, List, List]]: for epoch in range(epochs): for (X_b, y_b, w_b, ids_b) in dataset.iterbatches(batch_size=self.batch_size, deterministic=deterministic, pad_batches=pad_batches): if y_b is not None: y_b = to_one_hot(y_b.flatten(), self.n_classes).reshape( -1, self.n_tasks, self.n_classes) yield ([X_b], [y_b], [w_b])
def default_generator( self, dataset: dc.data.Dataset, epochs: int = 1, mode: str = 'fit', deterministic: bool = True, pad_batches: bool = True) -> Iterable[Tuple[List, List, List]]: for epoch in range(epochs): for (X_b, y_b, w_b, ids_b) in dataset.iterbatches(batch_size=self.batch_size, deterministic=deterministic, pad_batches=pad_batches): if mode == 'predict': dropout = np.array(0.0) else: dropout = np.array(1.0) yield ([X_b, dropout], [y_b], [w_b])