def setUp(self): state = np.random.RandomState(0) X = generate_dummy_dataset_alltypes(state, N_ROWS, DIM_REG, DIM_BOOL, DIM_ORD, DIM_CAT).X temps = state.random((N_ROWS, 1)) self.data = X self.network = VaeNet(config, dtype=tf.dtypes.float64)
def __init__(self, config: VAE.Config, **kwargs): tf.keras.Model.__init__(self, **kwargs) self.config = config self.network = VaeNet(config, **kwargs) self.lossnet = VaeLossNet(latent_eps=1e-6, prefix="loss", **kwargs) self.weight_getter = Vae.CoolingRegime(config, dtype=self.dtype) AutoencoderModelBaseMixin.__init__( self, self.weight_getter, self.network, self.config.get_latent_parser_type(), self.config.get_fake_output_getter(), )
DIM_X = DIM_REG + DIM_BOOL + sum(DIM_ORD) + sum(DIM_CAT) EMB_DIM = 10 LAT_DIM = 5 NCATS = 5 desciminatorConfig = DescriminatorNet.Config(embedding_dimensions=[EMB_DIM]) vaeConfig = VaeNet.Config( input_dimensions=MultipleObjectiveDimensions( regression=DIM_REG, boolean=DIM_BOOL, ordinal=DIM_ORD, categorical=DIM_CAT, ), output_dimensions=MultipleObjectiveDimensions( regression=DIM_REG, boolean=DIM_BOOL, ordinal=DIM_ORD, categorical=DIM_CAT, ), encoder_embedding_dimensions=[EMB_DIM], decoder_embedding_dimensions=[EMB_DIM], latent_dim=LAT_DIM, ) config0 = VaeNet.Config( input_dimensions=MultipleObjectiveDimensions( regression=DIM_REG, boolean=DIM_BOOL, ordinal=DIM_ORD, categorical=DIM_CAT,