Example #1
0
def represent(img_path,
              model_name='VGG-Face',
              model=None,
              enforce_detection=True,
              detector_backend='opencv',
              align=True,
              normalization='base'):
    """
	This function represents facial images as vectors.

	Parameters:
		img_path: exact image path, numpy array (BGR) or based64 encoded images could be passed.

		model_name (string): VGG-Face, Facenet, OpenFace, DeepFace, DeepID, Dlib, ArcFace.

		model: Built deepface model. A face recognition model is built every call of verify function. You can pass pre-built face recognition model optionally if you will call verify function several times. Consider to pass model if you are going to call represent function in a for loop.

			model = DeepFace.build_model('VGG-Face')

		enforce_detection (boolean): If any face could not be detected in an image, then verify function will return exception. Set this to False not to have this exception. This might be convenient for low resolution images.

		detector_backend (string): set face detector backend as retinaface, mtcnn, opencv, ssd or dlib

		normalization (string): normalize the input image before feeding to model

	Returns:
		Represent function returns a multidimensional vector. The number of dimensions is changing based on the reference model. E.g. FaceNet returns 128 dimensional vector; VGG-Face returns 2622 dimensional vector.
	"""

    if model is None:
        model = build_model(model_name)

    #---------------------------------

    #decide input shape
    input_shape_x, input_shape_y = functions.find_input_shape(model)

    #detect and align
    img = functions.preprocess_face(img=img_path,
                                    target_size=(input_shape_y, input_shape_x),
                                    enforce_detection=enforce_detection,
                                    detector_backend=detector_backend,
                                    align=align)

    #---------------------------------
    #custom normalization

    img = functions.normalize_input(img=img, normalization=normalization)

    #---------------------------------

    #represent
    embedding = model.predict(img)[0].tolist()

    return embedding
Example #2
0
def get_features_vec(pic) -> np.ndarray:
    """
    :argument
        pic: input PIL.Image.open object
    :return
        features_vec: features vec np array
    """
    pic = np.array(pic)
    model = Facenet.loadModel()
    input_shape = functions.find_input_shape(model)
    input_shape_x = input_shape[0]
    input_shape_y = input_shape[1]
    img = functions.preprocess_face(pic,
                                    target_size=(input_shape_y, input_shape_x),
                                    enforce_detection=True,
                                    detector_backend='mtcnn')
    features_vec = model.predict(img)[0, :]
    return features_vec
Example #3
0
def analysis(db_path,
             model_name,
             distance_metric,
             enable_face_analysis=True,
             source=0,
             time_threshold=5,
             frame_threshold=5):

    input_shape = (224, 224)
    input_shape_x = input_shape[0]
    input_shape_y = input_shape[1]

    text_color = (255, 255, 255)

    employees = []
    #check passed db folder exists
    if os.path.isdir(db_path) == True:
        for r, d, f in os.walk(db_path):  # r=root, d=directories, f = files
            for file in f:
                if ('.jpg' in file):
                    #exact_path = os.path.join(r, file)
                    exact_path = r + "/" + file
                    #print(exact_path)
                    employees.append(exact_path)

    if len(employees) == 0:
        print("WARNING: There is no image in this path ( ", db_path,
              ") . Face recognition will not be performed.")

    #------------------------

    if len(employees) > 0:

        model = DeepFace.build_model(model_name)
        print(model_name, " is built")

        #------------------------

        input_shape = functions.find_input_shape(model)
        input_shape_x = input_shape[0]
        input_shape_y = input_shape[1]

        #tuned thresholds for model and metric pair
        threshold = dst.findThreshold(model_name, distance_metric)

    #------------------------
    #facial attribute analysis models

    if enable_face_analysis == True:

        tic = time.time()

        emotion_model = DeepFace.build_model('Emotion')
        print("Emotion model loaded")

        age_model = DeepFace.build_model('Age')
        print("Age model loaded")

        gender_model = DeepFace.build_model('Gender')
        print("Gender model loaded")

        toc = time.time()

        print("Facial attibute analysis models loaded in ", toc - tic,
              " seconds")

    #------------------------

    #find embeddings for employee list

    tic = time.time()

    pbar = tqdm(range(0, len(employees)), desc='Finding embeddings')

    embeddings = []
    #for employee in employees:
    for index in pbar:
        employee = employees[index]
        pbar.set_description("Finding embedding for %s" %
                             (employee.split("/")[-1]))
        embedding = []
        img = functions.preprocess_face(img=employee,
                                        target_size=(input_shape_y,
                                                     input_shape_x),
                                        enforce_detection=False)
        img_representation = model.predict(img)[0, :]

        embedding.append(employee)
        embedding.append(img_representation)
        embeddings.append(embedding)

    df = pd.DataFrame(embeddings, columns=['employee', 'embedding'])
    df['distance_metric'] = distance_metric

    toc = time.time()

    print("Embeddings found for given data set in ", toc - tic, " seconds")

    #-----------------------

    pivot_img_size = 112  #face recognition result image

    #-----------------------

    opencv_path = functions.get_opencv_path()
    face_detector_path = opencv_path + "haarcascade_frontalface_default.xml"
    face_cascade = cv2.CascadeClassifier(face_detector_path)

    #-----------------------

    freeze = False
    face_detected = False
    face_included_frames = 0  #freeze screen if face detected sequantially 5 frames
    freezed_frame = 0
    tic = time.time()

    cap = cv2.VideoCapture(source)  #webcam

    while (True):
        ret, img = cap.read()

        #cv2.namedWindow('img', cv2.WINDOW_FREERATIO)
        #cv2.setWindowProperty('img', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)

        raw_img = img.copy()
        resolution = img.shape

        resolution_x = img.shape[1]
        resolution_y = img.shape[0]

        if freeze == False:
            faces = face_cascade.detectMultiScale(img, 1.3, 5)

            if len(faces) == 0:
                face_included_frames = 0
        else:
            faces = []

        detected_faces = []
        face_index = 0
        for (x, y, w, h) in faces:
            if w > 130:  #discard small detected faces

                face_detected = True
                if face_index == 0:
                    face_included_frames = face_included_frames + 1  #increase frame for a single face

                cv2.rectangle(img, (x, y), (x + w, y + h), (67, 67, 67),
                              1)  #draw rectangle to main image

                cv2.putText(img, str(frame_threshold - face_included_frames),
                            (int(x + w / 4), int(y + h / 1.5)),
                            cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 255, 255), 2)

                detected_face = img[int(y):int(y + h),
                                    int(x):int(x + w)]  #crop detected face

                #-------------------------------------

                detected_faces.append((x, y, w, h))
                face_index = face_index + 1

                #-------------------------------------

        if face_detected == True and face_included_frames == frame_threshold and freeze == False:
            freeze = True
            #base_img = img.copy()
            base_img = raw_img.copy()
            detected_faces_final = detected_faces.copy()
            tic = time.time()

        if freeze == True:

            toc = time.time()
            if (toc - tic) < time_threshold:

                if freezed_frame == 0:
                    freeze_img = base_img.copy()
                    #freeze_img = np.zeros(resolution, np.uint8) #here, np.uint8 handles showing white area issue

                    for detected_face in detected_faces_final:
                        x = detected_face[0]
                        y = detected_face[1]
                        w = detected_face[2]
                        h = detected_face[3]

                        cv2.rectangle(freeze_img, (x, y), (x + w, y + h),
                                      (67, 67, 67),
                                      1)  #draw rectangle to main image

                        #-------------------------------

                        #apply deep learning for custom_face

                        custom_face = base_img[y:y + h, x:x + w]

                        #-------------------------------
                        #facial attribute analysis

                        if enable_face_analysis == True:

                            gray_img = functions.preprocess_face(
                                img=custom_face,
                                target_size=(48, 48),
                                grayscale=True,
                                enforce_detection=False)
                            emotion_labels = [
                                'Angry', 'Disgust', 'Fear', 'Happy', 'Sad',
                                'Surprise', 'Neutral'
                            ]
                            emotion_predictions = emotion_model.predict(
                                gray_img)[0, :]
                            sum_of_predictions = emotion_predictions.sum()

                            mood_items = []
                            for i in range(0, len(emotion_labels)):
                                mood_item = []
                                emotion_label = emotion_labels[i]
                                emotion_prediction = 100 * emotion_predictions[
                                    i] / sum_of_predictions
                                mood_item.append(emotion_label)
                                mood_item.append(emotion_prediction)
                                mood_items.append(mood_item)

                            emotion_df = pd.DataFrame(
                                mood_items, columns=["emotion", "score"])
                            emotion_df = emotion_df.sort_values(
                                by=["score"],
                                ascending=False).reset_index(drop=True)

                            #background of mood box

                            #transparency
                            overlay = freeze_img.copy()
                            opacity = 0.4

                            if x + w + pivot_img_size < resolution_x:
                                #right
                                cv2.rectangle(
                                    freeze_img
                                    #, (x+w,y+20)
                                    ,
                                    (x + w, y),
                                    (x + w + pivot_img_size, y + h),
                                    (64, 64, 64),
                                    cv2.FILLED)

                                cv2.addWeighted(overlay, opacity, freeze_img,
                                                1 - opacity, 0, freeze_img)

                            elif x - pivot_img_size > 0:
                                #left
                                cv2.rectangle(
                                    freeze_img
                                    #, (x-pivot_img_size,y+20)
                                    ,
                                    (x - pivot_img_size, y),
                                    (x, y + h),
                                    (64, 64, 64),
                                    cv2.FILLED)

                                cv2.addWeighted(overlay, opacity, freeze_img,
                                                1 - opacity, 0, freeze_img)

                            for index, instance in emotion_df.iterrows():
                                emotion_label = "%s " % (instance['emotion'])
                                emotion_score = instance['score'] / 100

                                bar_x = 35  #this is the size if an emotion is 100%
                                bar_x = int(bar_x * emotion_score)

                                if x + w + pivot_img_size < resolution_x:

                                    text_location_y = y + 20 + (index + 1) * 20
                                    text_location_x = x + w

                                    if text_location_y < y + h:
                                        cv2.putText(
                                            freeze_img, emotion_label,
                                            (text_location_x, text_location_y),
                                            cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                                            (255, 255, 255), 1)

                                        cv2.rectangle(
                                            freeze_img, (x + w + 70, y + 13 +
                                                         (index + 1) * 20),
                                            (x + w + 70 + bar_x, y + 13 +
                                             (index + 1) * 20 + 5),
                                            (255, 255, 255), cv2.FILLED)

                                elif x - pivot_img_size > 0:

                                    text_location_y = y + 20 + (index + 1) * 20
                                    text_location_x = x - pivot_img_size

                                    if text_location_y <= y + h:
                                        cv2.putText(
                                            freeze_img, emotion_label,
                                            (text_location_x, text_location_y),
                                            cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                                            (255, 255, 255), 1)

                                        cv2.rectangle(
                                            freeze_img,
                                            (x - pivot_img_size + 70, y + 13 +
                                             (index + 1) * 20),
                                            (x - pivot_img_size + 70 + bar_x,
                                             y + 13 + (index + 1) * 20 + 5),
                                            (255, 255, 255), cv2.FILLED)

                            #-------------------------------

                            face_224 = functions.preprocess_face(
                                img=custom_face,
                                target_size=(224, 224),
                                grayscale=False,
                                enforce_detection=False)

                            age_predictions = age_model.predict(face_224)[0, :]
                            apparent_age = Age.findApparentAge(age_predictions)

                            #-------------------------------

                            gender_prediction = gender_model.predict(face_224)[
                                0, :]

                            if np.argmax(gender_prediction) == 0:
                                gender = "W"
                            elif np.argmax(gender_prediction) == 1:
                                gender = "M"

                            #print(str(int(apparent_age))," years old ", dominant_emotion, " ", gender)

                            analysis_report = str(
                                int(apparent_age)) + " " + gender

                            #-------------------------------

                            info_box_color = (46, 200, 255)

                            #top
                            if y - pivot_img_size + int(
                                    pivot_img_size / 5) > 0:

                                triangle_coordinates = np.array([
                                    (x + int(w / 2), y),
                                    (x + int(w / 2) - int(w / 10),
                                     y - int(pivot_img_size / 3)),
                                    (x + int(w / 2) + int(w / 10),
                                     y - int(pivot_img_size / 3))
                                ])

                                cv2.drawContours(freeze_img,
                                                 [triangle_coordinates], 0,
                                                 info_box_color, -1)

                                cv2.rectangle(
                                    freeze_img,
                                    (x + int(w / 5), y - pivot_img_size +
                                     int(pivot_img_size / 5)),
                                    (x + w - int(w / 5),
                                     y - int(pivot_img_size / 3)),
                                    info_box_color, cv2.FILLED)

                                cv2.putText(freeze_img, analysis_report,
                                            (x + int(w / 3.5),
                                             y - int(pivot_img_size / 2.1)),
                                            cv2.FONT_HERSHEY_SIMPLEX, 1,
                                            (0, 111, 255), 2)

                            #bottom
                            elif y + h + pivot_img_size - int(
                                    pivot_img_size / 5) < resolution_y:

                                triangle_coordinates = np.array([
                                    (x + int(w / 2), y + h),
                                    (x + int(w / 2) - int(w / 10),
                                     y + h + int(pivot_img_size / 3)),
                                    (x + int(w / 2) + int(w / 10),
                                     y + h + int(pivot_img_size / 3))
                                ])

                                cv2.drawContours(freeze_img,
                                                 [triangle_coordinates], 0,
                                                 info_box_color, -1)

                                cv2.rectangle(
                                    freeze_img,
                                    (x + int(w / 5),
                                     y + h + int(pivot_img_size / 3)),
                                    (x + w - int(w / 5), y + h +
                                     pivot_img_size - int(pivot_img_size / 5)),
                                    info_box_color, cv2.FILLED)

                                cv2.putText(freeze_img, analysis_report,
                                            (x + int(w / 3.5), y + h +
                                             int(pivot_img_size / 1.5)),
                                            cv2.FONT_HERSHEY_SIMPLEX, 1,
                                            (0, 111, 255), 2)

                        #-------------------------------
                        #face recognition

                        custom_face = functions.preprocess_face(
                            img=custom_face,
                            target_size=(input_shape_y, input_shape_x),
                            enforce_detection=False)

                        #check preprocess_face function handled
                        if custom_face.shape[1:3] == input_shape:
                            if df.shape[
                                    0] > 0:  #if there are images to verify, apply face recognition
                                img1_representation = model.predict(
                                    custom_face)[0, :]

                                #print(freezed_frame," - ",img1_representation[0:5])

                                def findDistance(row):
                                    distance_metric = row['distance_metric']
                                    img2_representation = row['embedding']

                                    distance = 1000  #initialize very large value
                                    if distance_metric == 'cosine':
                                        distance = dst.findCosineDistance(
                                            img1_representation,
                                            img2_representation)
                                    elif distance_metric == 'euclidean':
                                        distance = dst.findEuclideanDistance(
                                            img1_representation,
                                            img2_representation)
                                    elif distance_metric == 'euclidean_l2':
                                        distance = dst.findEuclideanDistance(
                                            dst.l2_normalize(
                                                img1_representation),
                                            dst.l2_normalize(
                                                img2_representation))

                                    return distance

                                df['distance'] = df.apply(findDistance, axis=1)
                                df = df.sort_values(by=["distance"])

                                candidate = df.iloc[0]
                                employee_name = candidate['employee']
                                best_distance = candidate['distance']

                                #print(candidate[['employee', 'distance']].values)

                                #if True:
                                if best_distance <= threshold:
                                    #print(employee_name)
                                    display_img = cv2.imread(employee_name)

                                    display_img = cv2.resize(
                                        display_img,
                                        (pivot_img_size, pivot_img_size))

                                    label = employee_name.split(
                                        "/")[-1].replace(".jpg", "")
                                    label = re.sub('[0-9]', '', label)

                                    try:
                                        if y - pivot_img_size > 0 and x + w + pivot_img_size < resolution_x:
                                            #top right
                                            freeze_img[
                                                y - pivot_img_size:y,
                                                x + w:x + w +
                                                pivot_img_size] = display_img

                                            overlay = freeze_img.copy()
                                            opacity = 0.4
                                            cv2.rectangle(
                                                freeze_img, (x + w, y),
                                                (x + w + pivot_img_size,
                                                 y + 20), (46, 200, 255),
                                                cv2.FILLED)
                                            cv2.addWeighted(
                                                overlay, opacity, freeze_img,
                                                1 - opacity, 0, freeze_img)

                                            cv2.putText(
                                                freeze_img, label,
                                                (x + w, y + 10),
                                                cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                                                text_color, 1)

                                            #connect face and text
                                            cv2.line(freeze_img,
                                                     (x + int(w / 2), y),
                                                     (x + 3 * int(w / 4), y -
                                                      int(pivot_img_size / 2)),
                                                     (67, 67, 67), 1)
                                            cv2.line(freeze_img,
                                                     (x + 3 * int(w / 4), y -
                                                      int(pivot_img_size / 2)),
                                                     (x + w, y -
                                                      int(pivot_img_size / 2)),
                                                     (67, 67, 67), 1)

                                        elif y + h + pivot_img_size < resolution_y and x - pivot_img_size > 0:
                                            #bottom left
                                            freeze_img[
                                                y + h:y + h + pivot_img_size,
                                                x -
                                                pivot_img_size:x] = display_img

                                            overlay = freeze_img.copy()
                                            opacity = 0.4
                                            cv2.rectangle(
                                                freeze_img,
                                                (x - pivot_img_size,
                                                 y + h - 20), (x, y + h),
                                                (46, 200, 255), cv2.FILLED)
                                            cv2.addWeighted(
                                                overlay, opacity, freeze_img,
                                                1 - opacity, 0, freeze_img)

                                            cv2.putText(
                                                freeze_img, label,
                                                (x - pivot_img_size,
                                                 y + h - 10),
                                                cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                                                text_color, 1)

                                            #connect face and text
                                            cv2.line(freeze_img,
                                                     (x + int(w / 2), y + h),
                                                     (x + int(w / 2) -
                                                      int(w / 4), y + h +
                                                      int(pivot_img_size / 2)),
                                                     (67, 67, 67), 1)
                                            cv2.line(freeze_img,
                                                     (x + int(w / 2) -
                                                      int(w / 4), y + h +
                                                      int(pivot_img_size / 2)),
                                                     (x, y + h +
                                                      int(pivot_img_size / 2)),
                                                     (67, 67, 67), 1)

                                        elif y - pivot_img_size > 0 and x - pivot_img_size > 0:
                                            #top left
                                            freeze_img[
                                                y - pivot_img_size:y, x -
                                                pivot_img_size:x] = display_img

                                            overlay = freeze_img.copy()
                                            opacity = 0.4
                                            cv2.rectangle(
                                                freeze_img,
                                                (x - pivot_img_size, y),
                                                (x, y + 20), (46, 200, 255),
                                                cv2.FILLED)
                                            cv2.addWeighted(
                                                overlay, opacity, freeze_img,
                                                1 - opacity, 0, freeze_img)

                                            cv2.putText(
                                                freeze_img, label,
                                                (x - pivot_img_size, y + 10),
                                                cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                                                text_color, 1)

                                            #connect face and text
                                            cv2.line(
                                                freeze_img,
                                                (x + int(w / 2), y),
                                                (x + int(w / 2) - int(w / 4),
                                                 y - int(pivot_img_size / 2)),
                                                (67, 67, 67), 1)
                                            cv2.line(
                                                freeze_img,
                                                (x + int(w / 2) - int(w / 4),
                                                 y - int(pivot_img_size / 2)),
                                                (x,
                                                 y - int(pivot_img_size / 2)),
                                                (67, 67, 67), 1)

                                        elif x + w + pivot_img_size < resolution_x and y + h + pivot_img_size < resolution_y:
                                            #bottom righ
                                            freeze_img[
                                                y + h:y + h + pivot_img_size,
                                                x + w:x + w +
                                                pivot_img_size] = display_img

                                            overlay = freeze_img.copy()
                                            opacity = 0.4
                                            cv2.rectangle(
                                                freeze_img,
                                                (x + w, y + h - 20),
                                                (x + w + pivot_img_size,
                                                 y + h), (46, 200, 255),
                                                cv2.FILLED)
                                            cv2.addWeighted(
                                                overlay, opacity, freeze_img,
                                                1 - opacity, 0, freeze_img)

                                            cv2.putText(
                                                freeze_img, label,
                                                (x + w, y + h - 10),
                                                cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                                                text_color, 1)

                                            #connect face and text
                                            cv2.line(freeze_img,
                                                     (x + int(w / 2), y + h),
                                                     (x + int(w / 2) +
                                                      int(w / 4), y + h +
                                                      int(pivot_img_size / 2)),
                                                     (67, 67, 67), 1)
                                            cv2.line(freeze_img,
                                                     (x + int(w / 2) +
                                                      int(w / 4), y + h +
                                                      int(pivot_img_size / 2)),
                                                     (x + w, y + h +
                                                      int(pivot_img_size / 2)),
                                                     (67, 67, 67), 1)
                                    except Exception as err:
                                        print(str(err))

                        tic = time.time(
                        )  #in this way, freezed image can show 5 seconds

                        #-------------------------------

                time_left = int(time_threshold - (toc - tic) + 1)

                cv2.rectangle(freeze_img, (10, 10), (90, 50), (67, 67, 67),
                              -10)
                cv2.putText(freeze_img, str(time_left), (40, 40),
                            cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1)

                cv2.imshow('img', freeze_img)

                freezed_frame = freezed_frame + 1
            else:
                face_detected = False
                face_included_frames = 0
                freeze = False
                freezed_frame = 0

        else:
            cv2.imshow('img', img)

        if cv2.waitKey(1) & 0xFF == ord('q'):  #press q to quit
            break

    #kill open cv things
    cap.release()
    cv2.destroyAllWindows()
def find(img_path,
         db_path,
         model_name='VGG-Face',
         distance_metric='cosine',
         model=None,
         enforce_detection=True,
         detector_backend='mtcnn'):
    """
	This function applies verification several times and find an identity in a database
	
	Parameters:
		img_path: exact image path, numpy array or based64 encoded image. If you are going to find several identities, then you should pass img_path as array instead of calling find function in a for loop. e.g. img_path = ["img1.jpg", "img2.jpg"]
		
		db_path (string): You should store some .jpg files in a folder and pass the exact folder path to this.
		
		model_name (string): VGG-Face, Facenet, OpenFace, DeepFace, DeepID, Dlib or Ensemble
		
		distance_metric (string): cosine, euclidean, euclidean_l2
		
		model: built deepface model. A face recognition models are built in every call of find function. You can pass pre-built models to speed the function up.
		
			model = DeepFace.build_model('VGG-Face')
		
		enforce_detection (boolean): The function throws exception if a face could not be detected. Set this to True if you don't want to get exception. This might be convenient for low resolution images.
		
		detector_backend (string): set face detector backend as mtcnn, opencv, ssd or dlib
		
	Returns:
		This function returns pandas data frame. If a list of images is passed to img_path, then it will return list of pandas data frame.
	"""

    tic = time.time()

    img_paths, bulkProcess = functions.initialize_input(img_path)
    functions.initialize_detector(detector_backend=detector_backend)

    #-------------------------------

    if os.path.isdir(db_path) == True:

        if model == None:

            if model_name == 'Ensemble':
                print("Ensemble learning enabled")
                models = Boosting.loadModel()

            else:  #model is not ensemble
                model = build_model(model_name)
                models = {}
                models[model_name] = model

        else:  #model != None
            print("Already built model is passed")

            if model_name == 'Ensemble':
                Boosting.validate_model(model)
                models = model.copy()
            else:
                models = {}
                models[model_name] = model

        #---------------------------------------

        if model_name == 'Ensemble':
            model_names = ['VGG-Face', 'Facenet', 'OpenFace', 'DeepFace']
            metric_names = ['cosine', 'euclidean', 'euclidean_l2']
        elif model_name != 'Ensemble':
            model_names = []
            metric_names = []
            model_names.append(model_name)
            metric_names.append(distance_metric)

        #---------------------------------------

        file_name = "representations_%s.pkl" % (model_name)
        file_name = file_name.replace("-", "_").lower()

        if path.exists(db_path + "/" + file_name):

            # print("WARNING: Representations for images in ",db_path," folder were previously stored in ", file_name, ". If you added new instances after this file creation, then please delete this file and call find function again. It will create it again.")

            f = open(db_path + '/' + file_name, 'rb')
            representations = pickle.load(f)

            print("There are ", len(representations),
                  " representations found in ", file_name)

        else:  #create representation.pkl from scratch
            employees = []

            for r, d, f in os.walk(
                    db_path):  # r=root, d=directories, f = files
                for file in f:
                    if ('.jpg' in file.lower()) or ('.png' in file.lower()):
                        exact_path = r + "/" + file
                        employees.append(exact_path)

            if len(employees) == 0:
                raise ValueError(
                    "There is no image in ", db_path,
                    " folder! Validate .jpg or .png files exist in this path.")

            #------------------------
            #find representations for db images

            representations = []

            pbar = tqdm(range(0, len(employees)),
                        desc='Finding representations')

            #for employee in employees:
            for index in pbar:
                employee = employees[index]

                instance = []
                instance.append(employee)

                for j in model_names:
                    custom_model = models[j]

                    #----------------------------------
                    #decide input shape

                    input_shape = functions.find_input_shape(custom_model)
                    input_shape_x = input_shape[0]
                    input_shape_y = input_shape[1]

                    #----------------------------------

                    img = functions.preprocess_face(
                        img=employee,
                        target_size=(input_shape_y, input_shape_x),
                        enforce_detection=enforce_detection,
                        detector_backend=detector_backend)

                    representation = custom_model.predict(img)[0, :]
                    instance.append(representation)

                #-------------------------------

                representations.append(instance)

            f = open(db_path + '/' + file_name, "wb")
            pickle.dump(representations, f)
            f.close()

            print(
                "Representations stored in ", db_path, "/", file_name,
                " file. Please delete this file when you add new identities in your database."
            )

        #----------------------------
        #now, we got representations for facial database

        if model_name != 'Ensemble':
            df = pd.DataFrame(
                representations,
                columns=["identity",
                         "%s_representation" % (model_name)])
        else:  #ensemble learning

            columns = ['identity']
            [columns.append('%s_representation' % i) for i in model_names]

            df = pd.DataFrame(representations, columns=columns)

        df_base = df.copy(
        )  #df will be filtered in each img. we will restore it for the next item.

        resp_obj = []

        global_pbar = tqdm(range(0, len(img_paths)), desc='Analyzing')
        for j in global_pbar:
            img_path = img_paths[j]

            #find representation for passed image

            for j in model_names:
                custom_model = models[j]

                #--------------------------------
                #decide input shape
                input_shape = functions.find_input_shape(custom_model)
                input_shape_x = input_shape[0]
                input_shape_y = input_shape[1]

                #--------------------------------

                img = functions.preprocess_face(
                    img=img_path,
                    target_size=(input_shape_y, input_shape_x),
                    enforce_detection=enforce_detection,
                    detector_backend=detector_backend)

                target_representation = custom_model.predict(img)[0, :]

                for k in metric_names:
                    distances = []
                    for index, instance in df.iterrows():
                        source_representation = instance["%s_representation" %
                                                         (j)]

                        if k == 'cosine':
                            distance = dst.findCosineDistance(
                                source_representation, target_representation)
                        elif k == 'euclidean':
                            distance = dst.findEuclideanDistance(
                                source_representation, target_representation)
                        elif k == 'euclidean_l2':
                            distance = dst.findEuclideanDistance(
                                dst.l2_normalize(source_representation),
                                dst.l2_normalize(target_representation))

                        distances.append(distance)

                    #---------------------------

                    if model_name == 'Ensemble' and j == 'OpenFace' and k == 'euclidean':
                        continue
                    else:
                        df["%s_%s" % (j, k)] = distances

                        if model_name != 'Ensemble':
                            threshold = dst.findThreshold(j, k)
                            df = df.drop(columns=["%s_representation" % (j)])
                            df = df[df["%s_%s" % (j, k)] <= threshold]

                            df = df.sort_values(
                                by=["%s_%s" % (j, k)],
                                ascending=True).reset_index(drop=True)

                            resp_obj.append(df)
                            df = df_base.copy(
                            )  #restore df for the next iteration

            #----------------------------------

            if model_name == 'Ensemble':

                feature_names = []
                for j in model_names:
                    for k in metric_names:
                        if model_name == 'Ensemble' and j == 'OpenFace' and k == 'euclidean':
                            continue
                        else:
                            feature = '%s_%s' % (j, k)
                            feature_names.append(feature)

                #print(df.head())

                x = df[feature_names].values

                #--------------------------------------

                boosted_tree = Boosting.build_gbm()

                y = boosted_tree.predict(x)

                verified_labels = []
                scores = []
                for i in y:
                    verified = np.argmax(i) == 1
                    score = i[np.argmax(i)]

                    verified_labels.append(verified)
                    scores.append(score)

                df['verified'] = verified_labels
                df['score'] = scores

                df = df[df.verified == True]
                #df = df[df.score > 0.99] #confidence score
                df = df.sort_values(by=["score"],
                                    ascending=False).reset_index(drop=True)
                df = df[['identity', 'verified', 'score']]

                resp_obj.append(df)
                df = df_base.copy()  #restore df for the next iteration

            #----------------------------------

        toc = time.time()

        print("find function lasts ", toc - tic, " seconds")

        if len(resp_obj) == 1:
            return resp_obj[0]

        return resp_obj

    else:
        raise ValueError("Passed db_path does not exist!")

    return None
def verify(img1_path,
           img2_path='',
           model_name='VGG-Face',
           distance_metric='cosine',
           model=None,
           enforce_detection=True,
           detector_backend='mtcnn'):
    """
	This function verifies an image pair is same person or different persons.	
	
	Parameters:
		img1_path, img2_path: exact image path, numpy array or based64 encoded images could be passed. If you are going to call verify function for a list of image pairs, then you should pass an array instead of calling the function in for loops.
		
		e.g. img1_path = [
			['img1.jpg', 'img2.jpg'], 
			['img2.jpg', 'img3.jpg']
		]
		
		model_name (string): VGG-Face, Facenet, OpenFace, DeepFace, DeepID, Dlib, ArcFace or Ensemble
		
		distance_metric (string): cosine, euclidean, euclidean_l2
		
		model: Built deepface model. A face recognition model is built every call of verify function. You can pass pre-built face recognition model optionally if you will call verify function several times.
		
			model = DeepFace.build_model('VGG-Face')
		
		enforce_detection (boolean): If any face could not be detected in an image, then verify function will return exception. Set this to False not to have this exception. This might be convenient for low resolution images.
		
		detector_backend (string): set face detector backend as mtcnn, opencv, ssd or dlib
	
	Returns:
		Verify function returns a dictionary. If img1_path is a list of image pairs, then the function will return list of dictionary.
		
		{
			"verified": True
			, "distance": 0.2563
			, "max_threshold_to_verify": 0.40
			, "model": "VGG-Face"
			, "similarity_metric": "cosine"
		}
		
	"""

    tic = time.time()

    img_list, bulkProcess = functions.initialize_input(img1_path, img2_path)
    functions.initialize_detector(detector_backend=detector_backend)

    resp_objects = []

    #--------------------------------

    if model_name == 'Ensemble':
        model_names = ["VGG-Face", "Facenet", "OpenFace", "DeepFace"]
        metrics = ["cosine", "euclidean", "euclidean_l2"]
    else:
        model_names = []
        metrics = []
        model_names.append(model_name)
        metrics.append(distance_metric)

    #--------------------------------

    if model == None:
        if model_name == 'Ensemble':
            models = Boosting.loadModel()
        else:
            model = build_model(model_name)
            models = {}
            models[model_name] = model
    else:
        if model_name == 'Ensemble':
            Boosting.validate_model(model)
            models = model.copy()
        else:
            models = {}
            models[model_name] = model

    #------------------------------

    #calling deepface in a for loop causes lots of progress bars. this prevents it.
    disable_option = False if len(img_list) > 1 else True

    pbar = tqdm(range(0, len(img_list)),
                desc='Verification',
                disable=disable_option)

    for index in pbar:

        instance = img_list[index]

        if type(instance) == list and len(instance) >= 2:
            img1_path = instance[0]
            img2_path = instance[1]

            ensemble_features = []

            for i in model_names:
                custom_model = models[i]

                #decide input shape
                input_shape = functions.find_input_shape(custom_model)
                input_shape_x = input_shape[0]
                input_shape_y = input_shape[1]

                #----------------------
                #detect and align faces

                img1 = functions.preprocess_face(
                    img=img1_path,
                    target_size=(input_shape_y, input_shape_x),
                    enforce_detection=enforce_detection,
                    detector_backend=detector_backend)

                img2 = functions.preprocess_face(
                    img=img2_path,
                    target_size=(input_shape_y, input_shape_x),
                    enforce_detection=enforce_detection,
                    detector_backend=detector_backend)

                #----------------------
                #find embeddings

                img1_representation = custom_model.predict(img1)[0, :]
                img2_representation = custom_model.predict(img2)[0, :]

                #----------------------
                #find distances between embeddings

                for j in metrics:

                    if j == 'cosine':
                        distance = dst.findCosineDistance(
                            img1_representation, img2_representation)
                    elif j == 'euclidean':
                        distance = dst.findEuclideanDistance(
                            img1_representation, img2_representation)
                    elif j == 'euclidean_l2':
                        distance = dst.findEuclideanDistance(
                            dst.l2_normalize(img1_representation),
                            dst.l2_normalize(img2_representation))
                    else:
                        raise ValueError("Invalid distance_metric passed - ",
                                         distance_metric)

                    distance = np.float64(
                        distance
                    )  #causes trobule for euclideans in api calls if this is not set (issue #175)
                    #----------------------
                    #decision

                    if model_name != 'Ensemble':

                        threshold = dst.findThreshold(i, j)

                        if distance <= threshold:
                            identified = True
                        else:
                            identified = False

                        resp_obj = {
                            "verified": identified,
                            "distance": distance,
                            "max_threshold_to_verify": threshold,
                            "model": model_name,
                            "similarity_metric": distance_metric
                        }

                        if bulkProcess == True:
                            resp_objects.append(resp_obj)
                        else:
                            return resp_obj

                    else:  #Ensemble

                        #this returns same with OpenFace - euclidean_l2
                        if i == 'OpenFace' and j == 'euclidean':
                            continue
                        else:
                            ensemble_features.append(distance)

            #----------------------

            if model_name == 'Ensemble':

                boosted_tree = Boosting.build_gbm()

                prediction = boosted_tree.predict(
                    np.expand_dims(np.array(ensemble_features), axis=0))[0]

                verified = np.argmax(prediction) == 1
                score = prediction[np.argmax(prediction)]

                resp_obj = {
                    "verified": verified,
                    "score": score,
                    "distance": ensemble_features,
                    "model": ["VGG-Face", "Facenet", "OpenFace", "DeepFace"],
                    "similarity_metric":
                    ["cosine", "euclidean", "euclidean_l2"]
                }

                if bulkProcess == True:
                    resp_objects.append(resp_obj)
                else:
                    return resp_obj

            #----------------------

        else:
            raise ValueError("Invalid arguments passed to verify function: ",
                             instance)

    #-------------------------

    toc = time.time()

    if bulkProcess == True:

        resp_obj = {}

        for i in range(0, len(resp_objects)):
            resp_item = resp_objects[i]
            resp_obj["pair_%d" % (i + 1)] = resp_item

        return resp_obj
Example #6
0
def verify(img1_path,
           img2_path='',
           model_name='VGG-Face',
           distance_metric='cosine',
           model=None,
           enforce_detection=True,
           detector_backend='mtcnn'):

    tic = time.time()

    img_list, bulkProcess = initialize_input(img1_path, img2_path)
    functions.initialize_detector(detector_backend=detector_backend)

    resp_objects = []

    #--------------------------------

    if model_name == 'Ensemble':
        model_names = ["VGG-Face", "Facenet", "OpenFace", "DeepFace"]
        metrics = ["cosine", "euclidean", "euclidean_l2"]
    else:
        model_names = []
        metrics = []
        model_names.append(model_name)
        metrics.append(distance_metric)

    #--------------------------------

    if model == None:
        if model_name == 'Ensemble':
            models = Boosting.loadModel()
        else:
            model = build_model(model_name)
            models = {}
            models[model_name] = model
    else:
        if model_name == 'Ensemble':
            Boosting.validate_model(model)
        else:
            models = {}
            models[model_name] = model

    #------------------------------

    #calling deepface in a for loop causes lots of progress bars. this prevents it.
    disable_option = False if len(img_list) > 1 else True

    pbar = tqdm(range(0, len(img_list)),
                desc='Verification',
                disable=disable_option)

    for index in pbar:

        instance = img_list[index]

        if type(instance) == list and len(instance) >= 2:
            img1_path = instance[0]
            img2_path = instance[1]

            ensemble_features = []

            for i in model_names:
                custom_model = models[i]

                #decide input shape
                input_shape = functions.find_input_shape(custom_model)
                input_shape_x = input_shape[0]
                input_shape_y = input_shape[1]

                #----------------------
                #detect and align faces

                img1 = functions.preprocess_face(
                    img=img1_path,
                    target_size=(input_shape_y, input_shape_x),
                    enforce_detection=enforce_detection,
                    detector_backend=detector_backend)

                img2 = functions.preprocess_face(
                    img=img2_path,
                    target_size=(input_shape_y, input_shape_x),
                    enforce_detection=enforce_detection,
                    detector_backend=detector_backend)

                #----------------------
                #find embeddings

                img1_representation = custom_model.predict(img1)[0, :]
                img2_representation = custom_model.predict(img2)[0, :]

                #----------------------
                #find distances between embeddings

                for j in metrics:

                    if j == 'cosine':
                        distance = dst.findCosineDistance(
                            img1_representation, img2_representation)
                    elif j == 'euclidean':
                        distance = dst.findEuclideanDistance(
                            img1_representation, img2_representation)
                    elif j == 'euclidean_l2':
                        distance = dst.findEuclideanDistance(
                            dst.l2_normalize(img1_representation),
                            dst.l2_normalize(img2_representation))
                    else:
                        raise ValueError("Invalid distance_metric passed - ",
                                         distance_metric)

                    #----------------------
                    #decision

                    if model_name != 'Ensemble':

                        threshold = dst.findThreshold(i, j)

                        if distance <= threshold:
                            identified = True
                        else:
                            identified = False

                        resp_obj = {
                            "verified": identified,
                            "distance": distance,
                            "max_threshold_to_verify": threshold,
                            "model": model_name,
                            "similarity_metric": distance_metric
                        }

                        if bulkProcess == True:
                            resp_objects.append(resp_obj)
                        else:
                            return resp_obj

                    else:  #Ensemble

                        #this returns same with OpenFace - euclidean_l2
                        if i == 'OpenFace' and j == 'euclidean':
                            continue
                        else:
                            ensemble_features.append(distance)

            #----------------------

            if model_name == 'Ensemble':

                boosted_tree = Boosting.build_gbm()

                prediction = boosted_tree.predict(
                    np.expand_dims(np.array(ensemble_features), axis=0))[0]

                verified = np.argmax(prediction) == 1
                score = prediction[np.argmax(prediction)]

                resp_obj = {
                    "verified": verified,
                    "score": score,
                    "distance": ensemble_features,
                    "model": ["VGG-Face", "Facenet", "OpenFace", "DeepFace"],
                    "similarity_metric":
                    ["cosine", "euclidean", "euclidean_l2"]
                }

                if bulkProcess == True:
                    resp_objects.append(resp_obj)
                else:
                    return resp_obj

            #----------------------

        else:
            raise ValueError("Invalid arguments passed to verify function: ",
                             instance)

    #-------------------------

    toc = time.time()

    if bulkProcess == True:

        resp_obj = {}

        for i in range(0, len(resp_objects)):
            resp_item = resp_objects[i]
            resp_obj["pair_%d" % (i + 1)] = resp_item

        return resp_obj
def analysis(db_path,
             model_name,
             distance_metric,
             enable_face_analysis=False,
             source=0,
             time_threshold=5,
             frame_threshold=5):
    #Intitalize the input shape
    #input_shape = (224, 224); input_shape_x = input_shape[0]; input_shape_y = input_shape[1]

    employees = []
    #check passed db folder exists
    if os.path.isdir(db_path) == True:
        for r, d, f in os.walk(db_path):  # r=root, d=directories, f = files
            for file in f:
                if ('.jpg' in file):
                    #exact_path = os.path.join(r, file)
                    exact_path = r + "/" + file
                    #print(exact_path)
                    employees.append(exact_path)

    #------------------------

    if len(employees) > 0:

        model = DeepFace.build_model(model_name)
        print(model_name, " is built")

        #------------------------

        input_shape = functions.find_input_shape(model)
        input_shape_x = input_shape[0]
        input_shape_y = input_shape[1]

    #------------------------
    #facial attribute analysis models

    if enable_face_analysis == True:

        tic = time.time()

        emotion_model = DeepFace.build_model('Emotion')
        #sg.popup_quick_message('Emotion Model Loaded')
        print("Emotion model loaded")

        toc = time.time()

        print("Facial attibute analysis models loaded in ", toc - tic,
              " seconds")

    #------------------------

    #find embeddings for employee list

    tic = time.time()

    pbar = tqdm(range(0, len(employees)), desc='Finding embeddings')

    embeddings = []
    #for employee in employees:
    for index in pbar:
        employee = employees[index]
        pbar.set_description("Finding embedding for %s" %
                             (employee.split("/")[-1]))
        embedding = []
        captured_frame = functions.preprocess_face(img=employee,
                                                   target_size=(input_shape_y,
                                                                input_shape_x),
                                                   enforce_detection=False)
        img_representation = model.predict(captured_frame)[0, :]

        embedding.append(employee)
        embedding.append(img_representation)
        embeddings.append(embedding)

    df = pd.DataFrame(embeddings, columns=['employee', 'embedding'])
    df['distance_metric'] = distance_metric

    toc = time.time()

    print("Embeddings found for given data set in ", toc - tic, " seconds")

    #-----------------------

    pivot_img_size = 112  #face recognition result image

    #-----------------------

    opencv_path = functions.get_opencv_path()
    face_detector_path = opencv_path + "haarcascade_frontalface_default.xml"
    face_cascade = cv2.CascadeClassifier(face_detector_path)

    #-----------------------Declare Variables

    freeze = False
    face_detected = False
    face_included_frames = 0  #freeze screen if face detected sequantially 5 frames
    freezed_frame = 0
    tic = time.time()

    # START CAMERA
    win_started = False

    captured_video = cv2.VideoCapture(source)  #Start webcam

    while (True):
        ret, captured_frame = captured_video.read()

        #cv2.namedWindow('captured_frame', cv2.WINDOW_FREERATIO)
        #cv2.setWindowProperty('captured_frame', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)

        raw_img = captured_frame.copy()
        resolution = captured_frame.shape

        resolution_x = captured_frame.shape[1]
        resolution_y = captured_frame.shape[0]

        if freeze == False:
            faces = face_cascade.detectMultiScale(captured_frame, 1.3, 5)

            if len(faces) == 0:
                face_included_frames = 0
        else:
            faces = []

        detected_faces = []
        face_index = 0
        for (x, y, w, h) in faces:
            if w > 130:  #discard small detected faces

                face_detected = True
                if face_index == 0:
                    face_included_frames = face_included_frames + 1  #increase frame for a single face

                cv2.rectangle(captured_frame, (x, y), (x + w, y + h),
                              (67, 67, 67), 1)  #draw rectangle to main image

                cv2.putText(captured_frame,
                            str(frame_threshold - face_included_frames),
                            (int(x + w / 4), int(y + h / 1.5)),
                            cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 255, 255), 2)

                detected_face = captured_frame[int(y):int(y + h),
                                               int(x):int(
                                                   x + w)]  #crop detected face

                #-------------------------------------

                detected_faces.append((x, y, w, h))
                face_index = face_index + 1

                #-------------------------------------

        if face_detected == True and face_included_frames == frame_threshold and freeze == False:
            freeze = True
            #base_img = captured_frame.copy()
            base_img = raw_img.copy()
            detected_faces_final = detected_faces.copy()
            tic = time.time()

        if freeze == True:

            toc = time.time()
            if (toc - tic) < time_threshold:

                if freezed_frame == 0:
                    freeze_img = base_img.copy()
                    #freeze_img = np.zeros(resolution, np.uint8) #here, np.uint8 handles showing white area issue

                    for detected_face in detected_faces_final:
                        x = detected_face[0]
                        y = detected_face[1]
                        w = detected_face[2]
                        h = detected_face[3]

                        cv2.rectangle(freeze_img, (x, y), (x + w, y + h),
                                      (67, 67, 67),
                                      1)  #draw rectangle to main image

                        #-------------------------------

                        #apply deep learning for custom_face

                        custom_face = base_img[y:y + h, x:x + w]

                        #-------------------------------
                        #facial attribute analysis

                        if enable_face_analysis == True:

                            gray_img = functions.preprocess_face(
                                img=custom_face,
                                target_size=(48, 48),
                                grayscale=True,
                                enforce_detection=False)
                            emotion_labels = [
                                'Angry', 'Disgust', 'Fear', 'Happy', 'Sad',
                                'Surprise', 'Neutral'
                            ]
                            emotion_predictions = emotion_model.predict(
                                gray_img)[0, :]
                            sum_of_predictions = emotion_predictions.sum()

                            mood_items = []
                            for i in range(0, len(emotion_labels)):
                                mood_item = []
                                emotion_label = emotion_labels[i]
                                emotion_prediction = 100 * emotion_predictions[
                                    i] / sum_of_predictions
                                mood_item.append(emotion_label)
                                mood_item.append(emotion_prediction)
                                mood_items.append(mood_item)

                            emotion_df = pd.DataFrame(
                                mood_items, columns=["emotion", "score"])
                            emotion_df = emotion_df.sort_values(
                                by=["score"],
                                ascending=False).reset_index(drop=True)

                            #background of mood box

                            #transparency
                            overlay = freeze_img.copy()
                            opacity = 0.1

                            if x + w + pivot_img_size < resolution_x:
                                #right
                                cv2.rectangle(
                                    freeze_img
                                    #, (x+w,y+20)
                                    ,
                                    (x + w, y),
                                    (x + w + pivot_img_size, y + h),
                                    (208, 189, 0),
                                    cv2.FILLED)  #TEAL

                                cv2.addWeighted(
                                    overlay,
                                    opacity,
                                    freeze_img,
                                    1 - opacity,
                                    0,
                                    freeze_img,
                                )

                            elif x - pivot_img_size > 0:
                                #left
                                cv2.rectangle(
                                    freeze_img
                                    #, (x-pivot_img_size,y+20)
                                    ,
                                    (x - pivot_img_size, y),
                                    (x, y + h),
                                    (208, 189, 0),
                                    cv2.FILLED)  #TEAL

                                cv2.addWeighted(overlay, opacity, freeze_img,
                                                1 - opacity, 0, freeze_img)

                            for index, instance in emotion_df.iterrows():
                                emotion_label = "%s " % (instance['emotion'])
                                emotion_score = instance['score'] / 100

                                bar_x = 35  #this is the size if an emotion is 100%
                                bar_x = int(bar_x * emotion_score)

                                if x + w + pivot_img_size < resolution_x:

                                    text_location_y = y + 20 + (index + 1) * 20
                                    text_location_x = x + w

                                    if text_location_y < y + h:
                                        cv2.putText(
                                            freeze_img, emotion_label,
                                            (text_location_x, text_location_y),
                                            cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                                            (255, 255, 255), 1)

                                        cv2.rectangle(
                                            freeze_img, (x + w + 70, y + 13 +
                                                         (index + 1) * 20),
                                            (x + w + 70 + bar_x, y + 13 +
                                             (index + 1) * 20 + 5),
                                            (255, 255, 255), cv2.FILLED)

                                elif x - pivot_img_size > 0:

                                    text_location_y = y + 20 + (index + 1) * 20
                                    text_location_x = x - pivot_img_size

                                    if text_location_y <= y + h:
                                        cv2.putText(
                                            freeze_img, emotion_label,
                                            (text_location_x, text_location_y),
                                            cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                                            (255, 255, 255), 1)

                                        cv2.rectangle(
                                            freeze_img,
                                            (x - pivot_img_size + 70, y + 13 +
                                             (index + 1) * 20),
                                            (x - pivot_img_size + 70 + bar_x,
                                             y + 13 + (index + 1) * 20 + 5),
                                            (255, 255, 255), cv2.FILLED)

                        #-------------------------------

                # time_left = int(time_threshold - (toc - tic) + 1)
                # countdown box
                # cv2.rectangle(freeze_img, (10, 10), (90, 50), (208,189,0), -10)
                # cv2.putText(freeze_img, str(time_left), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1)

                cv2.imshow('Analysis Report', freeze_img)

                freezed_frame = freezed_frame + 1
            else:
                face_detected = False
                face_included_frames = 0
                freeze = False
                freezed_frame = 0

        imgbytes = cv2.imencode('.png', captured_frame)[1].tobytes(
        )  # Have to add this and also chnage parrameter
        # ---------------------------- THE GUI ----------------------------
        sg.theme('Reddit')
        if not win_started:
            win_started = True
            layout = [
                [sg.Text('Facial Analysis in Progress', size=(30, 1))],
                [sg.Image(data=imgbytes,
                          key='_IMAGE_')],  # THIS IS THE ACTUAL CV FEED WINDOW
                [sg.Button('Stop')]
            ]
            window = sg.Window('Emotion Detection',
                               layout,
                               default_element_size=(14, 1),
                               text_justification='left',
                               auto_size_text=False,
                               font='helvetica',
                               icon=icon_logo64,
                               finalize=True)

            image_elem = window['_IMAGE_']
        else:
            image_elem.update(data=imgbytes)

        event, values = window.read(timeout=0)
        if event is None or event == 'Stop':
            break
    window.close()

    #kill open cv things
    captured_video.release()
    cv2.destroyAllWindows()