def evaluate(predictions, ground_df, root_dir, show_plot=True, iou_threshold=0.4, savedir=None): """Image annotated crown evaluation routine submission can be submitted as a .shp, existing pandas dataframe or .csv path Args: predictions: a pandas dataframe, if supplied a root dir is needed to give the relative path of files in df.name ground_df: a pandas dataframe, if supplied a root dir is needed to give the relative path of files in df.name root_dir: location of files in the dataframe 'name' column. show_plot: Whether to show boxes as they are plotted Returns: results: a dataframe of match bounding boxes box_recall: proportion of true positives of box position, regardless of class box_precision: proportion of predictions that are true positive, regardless of class class_recall: a pandas dataframe of class level recall and precision with class sizes """ check_file(ground_df) check_file(predictions) # Run evaluation on all plots results = [] box_recalls = [] box_precisions = [] for image_path, group in predictions.groupby("image_path"): #clean indices plot_ground_truth = ground_df[ground_df["image_path"] == image_path].reset_index(drop=True) group = group.reset_index(drop=True) result = evaluate_image(predictions=group, ground_df=plot_ground_truth, show_plot=show_plot, root_dir=root_dir, savedir=savedir) result["image_path"] = image_path result["match"] = result.IoU > iou_threshold true_positive = sum(result["match"]) recall = true_positive / result.shape[0] precision = true_positive / group.shape[0] box_recalls.append(recall) box_precisions.append(precision) results.append(result) if len(results) == 0: print("No predictions made, setting precision and recall to 0") box_recall = 0 box_precision = 0 else: results = pd.concat(results) box_precision = np.mean(box_precisions) box_recall = np.mean(box_recalls) #Per class recall and precision class_recall_dict = {} class_precision_dict = {} class_size = {} for name, group in result.groupby("true_label"): class_recall_dict[name] = sum( group.true_label == group.predicted_label) / ground_df.shape[0] class_precision_dict[name] = sum( group.true_label == group.predicted_label) / predictions.shape[0] class_size[name] = group.size class_recall = pd.DataFrame({ "label": class_recall_dict.keys(), "recall": pd.Series(class_recall_dict), "precision": pd.Series(class_precision_dict), "size": pd.Series(class_size) }).reset_index(drop=True) return { "results": results, "box_precision": box_precision, "box_recall": box_recall, "class_recall": class_recall }
def evaluate(predictions, ground_df, root_dir, iou_threshold=0.4, savedir=None): """Image annotated crown evaluation routine submission can be submitted as a .shp, existing pandas dataframe or .csv path Args: predictions: a pandas dataframe, if supplied a root dir is needed to give the relative path of files in df.name. The labels in ground truth and predictions must match. If one is numeric, the other must be numeric. ground_df: a pandas dataframe, if supplied a root dir is needed to give the relative path of files in df.name root_dir: location of files in the dataframe 'name' column. Returns: results: a dataframe of match bounding boxes box_recall: proportion of true positives of box position, regardless of class box_precision: proportion of predictions that are true positive, regardless of class class_recall: a pandas dataframe of class level recall and precision with class sizes """ check_file(ground_df) check_file(predictions) # Run evaluation on all plots results = [] box_recalls = [] box_precisions = [] for image_path, group in ground_df.groupby("image_path"): #clean indices image_predictions = predictions[predictions["image_path"] == image_path].reset_index(drop=True) #If empty, add to list without computing IoU if image_predictions.empty: result = pd.DataFrame({ "truth_id": group.index.values, "prediction_id": None, "IoU": 0, "predicted_label": None, "score": None, "match": None, "true_label": group.label }) #An empty prediction set has recall of 0, precision of NA. box_recalls.append(0) results.append(result) continue else: group = group.reset_index(drop=True) result = evaluate_image(predictions=image_predictions, ground_df=group, root_dir=root_dir, savedir=savedir) result["image_path"] = image_path result["match"] = result.IoU > iou_threshold true_positive = sum(result["match"]) recall = true_positive / result.shape[0] precision = true_positive / image_predictions.shape[0] box_recalls.append(recall) box_precisions.append(precision) results.append(result) results = pd.concat(results) box_precision = np.mean(box_precisions) box_recall = np.mean(box_recalls) #Per class recall and precision class_recall_dict = {} class_precision_dict = {} class_size = {} box_results = results[results.predicted_label.notna()] if box_results.empty: print("No predictions made") box_recall = 0 box_precision = 0 class_recall = pd.DataFrame() return { "results": results, "box_precision": box_precision, "box_recall": box_recall, "class_recall": class_recall } for name, group in box_results.groupby("true_label"): class_recall_dict[name] = sum( group.true_label == group.predicted_label) / group.shape[0] number_of_predictions = box_results[box_results.predicted_label == name].shape[0] if number_of_predictions == 0: class_precision_dict[name] = 0 else: class_precision_dict[name] = sum( group.true_label == group.predicted_label) / number_of_predictions class_size[name] = group.shape[0] class_recall = pd.DataFrame({ "label": class_recall_dict.keys(), "recall": pd.Series(class_recall_dict), "precision": pd.Series(class_precision_dict), "size": pd.Series(class_size) }).reset_index(drop=True) return { "results": results, "box_precision": box_precision, "box_recall": box_recall, "class_recall": class_recall }