Example #1
0
def test_load_data_covertype():
    from deephyper.benchmark.datasets import covertype
    import numpy as np

    names = ["train", "valid", "test"]
    data = covertype.load_data(random_state=42)
    for (X, y), subset_name in zip(data, names):
        print(
            f"X_{subset_name} shape: ",
            np.shape(X),
            f", y_{subset_name} shape: ",
            np.shape(y),
        )
Example #2
0
def load_data_cache():
    # Random state
    random_state = np.random.RandomState(seed=42)

    (X_train, y_train), (X_valid, y_valid), _ = covertype.load_data(
        random_state=random_state
    )

    prepro_output = preprocessing.OneHotEncoder()
    y_train = y_train.reshape(-1, 1)
    y_valid = y_valid.reshape(-1, 1)
    y_train = prepro_output.fit_transform(y_train).toarray()
    y_valid = prepro_output.transform(y_valid).toarray()

    prepro_input = minmaxstdscaler()
    X_train = prepro_input.fit_transform(X_train)
    X_valid = prepro_input.transform(X_valid)

    print(f"X_train shape: {np.shape(X_train)}")
    print(f"y_train shape: {np.shape(y_train)}")
    print(f"X_valid shape: {np.shape(X_valid)}")
    print(f"y_valid shape: {np.shape(y_valid)}")
    return (X_train, y_train), (X_valid, y_valid)
Example #3
0
 def load_data():
     train, valid, _ = covertype.load_data(random_state=42)
     return train, valid