def create_conv_lstm_search_space( input_shape=(7, 808, 782, 1), output_shape=(7, 808, 782, 1), num_layers=10, *args, **kwargs, ): arch = KSearchSpace(input_shape, output_shape) source = prev_input = arch.input_nodes[0] # look over skip connections within a range of the 3 previous nodes anchor_points = collections.deque([source], maxlen=3) for _ in range(num_layers): vnode = VariableNode() add_convlstm_to_(vnode) arch.connect(prev_input, vnode) # * Cell output cell_output = vnode cmerge = ConstantNode() cmerge.set_op( AddByProjecting(arch, [cell_output], activation="relu", axis=-2)) for anchor in anchor_points: skipco = VariableNode() skipco.add_op(Tensor([])) skipco.add_op(Connect(arch, anchor)) arch.connect(skipco, cmerge) # ! for next iter prev_input = cmerge anchor_points.append(prev_input) # Add layer to enforce consistency cnode = ConstantNode() units = output_shape[-1] add_convlstm_oplayer_(cnode, units) arch.connect(prev_input, cnode) return arch
def build_sub_graph(self, input_, num_layers=3): source = prev_input = input_ # look over skip connections within a range of the 3 previous nodes anchor_points = collections.deque([source], maxlen=3) for _ in range(num_layers): vnode = VariableNode() self.add_dense_to_(vnode) self.ss.connect(prev_input, vnode) # * Cell output cell_output = vnode cmerge = ConstantNode() cmerge.set_op( AddByProjecting(self.ss, [cell_output], activation="relu")) for anchor in anchor_points: skipco = VariableNode() skipco.add_op(Zero()) skipco.add_op(Connect(self.ss, anchor)) self.ss.connect(skipco, cmerge) prev_input = cmerge # ! for next iter anchor_points.append(prev_input) return prev_input
def create_search_space( input_shape=(10,), output_shape=(7,), num_layers=10, *args, **kwargs ): arch = AutoKSearchSpace(input_shape, output_shape, regression=True) source = prev_input = arch.input_nodes[0] # look over skip connections within a range of the 3 previous nodes anchor_points = collections.deque([source], maxlen=3) for _ in range(num_layers): vnode = VariableNode() add_dense_to_(vnode) arch.connect(prev_input, vnode) # * Cell output cell_output = vnode cmerge = ConstantNode() cmerge.set_op(AddByProjecting(arch, [cell_output], activation="relu")) for anchor in anchor_points: skipco = VariableNode() skipco.add_op(Tensor([])) skipco.add_op(Connect(arch, anchor)) arch.connect(skipco, cmerge) # ! for next iter prev_input = cmerge anchor_points.append(prev_input) return arch
def build_sub_graph(self, input_, num_layers=3): source = prev_input = input_ mirror = False is_input = False if type(source) is ConstantNode: if type(source._op) is Tensor: if "input_" in source._op.tensor.name: is_input = True input_name = source._op.tensor.name input_shape = tuple(source._op.tensor.shape[1:]) if self.shapes_to_vnodes.get(input_shape) is None: self.shapes_to_vnodes[input_shape] = [] else: mirror = True memory = self.shapes_to_vnodes[input_shape][::-1] # look over skip connections within a range of the 3 previous nodes anchor_points = collections.deque([source], maxlen=3) for layer_i in range(num_layers): if not(mirror): vnode = VariableNode() self.add_dense_to_(vnode) if is_input: self.shapes_to_vnodes[input_shape].append(vnode) else: vnode = MirrorNode(memory.pop()) self.ss.connect(prev_input, vnode) # * Cell output prev_node = vnode if layer_i == num_layers-1: return prev_node cmerge = ConstantNode() cmerge.set_op(Concatenate(self.ss, [prev_node])) for anchor in anchor_points: if not(mirror): skipco = VariableNode() if is_input: self.shapes_to_vnodes[input_shape].append(skipco) else: skipco = MimeNode(memory.pop()) skipco.add_op(Zero()) skipco.add_op(Connect(self.ss, anchor)) self.ss.connect(skipco, cmerge) prev_input = cmerge # ! for next iter anchor_points.append(prev_input) return prev_input
def create_search_space( input_shape=(20, ), output_shape=(20, ), num_layers=5, *args, **kwargs): vocab_size = 10000 ss = KSearchSpace(input_shape, (*output_shape, vocab_size)) source = ss.input_nodes[0] emb = VariableNode() add_embedding_(emb, vocab_size) ss.connect(source, emb) timestep_dropout = prev_input = ConstantNode(op=TimestepDropout(rate=0.1)) ss.connect(emb, timestep_dropout) # look over skip connections within a range of the 2 previous nodes anchor_points = collections.deque([timestep_dropout], maxlen=3) for _ in range(num_layers): vnode = VariableNode() add_lstm_seq_(vnode) ss.connect(prev_input, vnode) # * Cell output cell_output = vnode cmerge = ConstantNode() cmerge.set_op(AddByProjecting(ss, [cell_output], activation="relu")) for anchor in anchor_points: skipco = VariableNode() skipco.add_op(Zero()) skipco.add_op(Connect(ss, anchor)) ss.connect(skipco, cmerge) # ! for next iter prev_input = cmerge anchor_points.append(prev_input) # out = ConstantNode( # op=tf.keras.layers.TimeDistributed( # tf.keras.layers.Dense(units=vocab_size, activation="softmax") # ) # ) out = ConstantNode( op=tf.keras.layers.Dense(units=vocab_size, activation="softmax")) ss.connect(prev_input, out) return ss
def build( self, input_shape, output_shape, regression=True, num_layers=10, dropout=0.0, **kwargs, ): ss = AutoKSearchSpace(input_shape, output_shape, regression=regression) source = prev_input = ss.input_nodes[0] # look over skip connections within a range of the 3 previous nodes anchor_points = collections.deque([source], maxlen=3) for _ in range(num_layers): vnode = VariableNode() self.add_dense_to_(vnode) ss.connect(prev_input, vnode) # * Cell output cell_output = vnode cmerge = ConstantNode() cmerge.set_op(AddByProjecting(ss, [cell_output], activation="relu")) for anchor in anchor_points: skipco = VariableNode() skipco.add_op(Zero()) skipco.add_op(Connect(ss, anchor)) ss.connect(skipco, cmerge) prev_input = cmerge # ! for next iter anchor_points.append(prev_input) if dropout >= 0.0: dropout_node = ConstantNode(op=Dropout(rate=dropout)) ss.connect(prev_input, dropout_node) return ss
def create_structure(input_shape=[(1, ), (942, ), (5270, ), (2048, )], output_shape=(1, ), num_cells=2, *args, **kwargs): struct = AutoKSearchSpace(input_shape, output_shape, regression=True) input_nodes = struct.input_nodes output_submodels = [input_nodes[0]] for i in range(1, 4): cnode1 = ConstantNode(name='N', op=Dense(1000, tf.nn.relu)) struct.connect(input_nodes[i], cnode1) cnode2 = ConstantNode(name='N', op=Dense(1000, tf.nn.relu)) struct.connect(cnode1, cnode2) vnode1 = VariableNode(name='N3') add_mlp_op_(vnode1) struct.connect(cnode2, vnode1) output_submodels.append(vnode1) merge1 = ConstantNode(name='Merge') # merge1.set_op(Concatenate(struct, merge1, output_submodels)) merge1.set_op(Concatenate(struct, output_submodels)) cnode4 = ConstantNode(name='N', op=Dense(1000, tf.nn.relu)) struct.connect(merge1, cnode4) prev = cnode4 for i in range(num_cells): cnode = ConstantNode(name='N', op=Dense(1000, tf.nn.relu)) struct.connect(prev, cnode) merge = ConstantNode(name='Merge') # merge.set_op(AddByPadding(struct, merge, [cnode, prev])) merge.set_op(AddByPadding(struct, [cnode, prev])) prev = merge return struct
def test_create_multiple_inputs_with_one_vnode(self): from deephyper.nas.space import KSearchSpace from deephyper.nas.space.node import VariableNode, ConstantNode from deephyper.nas.space.op.op1d import Dense from deephyper.nas.space.op.merge import Concatenate struct = KSearchSpace([(5, ), (5, )], (1, )) merge = ConstantNode() merge.set_op(Concatenate(struct, struct.input_nodes)) vnode1 = VariableNode() struct.connect(merge, vnode1) vnode1.add_op(Dense(1)) struct.set_ops([0]) struct.create_model()
def build(self, input_shape, output_shape, regression=True, **kwargs): ss = AutoKSearchSpace(input_shape, output_shape, regression=regression) if type(input_shape) is list: vnodes = [] for i in range(len(input_shape)): vn = self.gen_vnode() vnodes.append(vn) ss.connect(ss.input_nodes[i], vn) cn = ConstantNode() cn.set_op(Concatenate(ss, vnodes)) vn = self.gen_vnode() ss.connect(cn, vn) else: vnode1 = self.gen_vnode() ss.connect(ss.input_nodes[0], vnode1) return ss
def build( self, input_shape, output_shape, regression=True, num_layers=10, **kwargs, ): self.ss = AutoKSearchSpace(input_shape, output_shape, regression=regression) self.shapes_to_vnodes = {} sub_graphs_outputs = [] for input_ in self.ss.input_nodes: output_sub_graph = self.build_sub_graph(input_) sub_graphs_outputs.append(output_sub_graph) cmerge = ConstantNode() cmerge.set_op(Concatenate(self.ss, sub_graphs_outputs)) output_sub_graph = self.build_sub_graph(cmerge) return self.ss