Example #1
0
def test_reproducible_runs(strategy, surrogate):
    # two runs of the optimizer should yield exactly the same results

    optimizer = Optimizer(
        base_estimator=surrogate(random_state=1),
        dimensions=[Real(-5.0, 10.0), Real(0.0, 15.0)],
        acq_optimizer="sampling",
        random_state=1,
    )

    points = []
    for i in range(n_steps):
        x = optimizer.ask(n_points, strategy)
        points.append(x)
        optimizer.tell(x, [branin(v) for v in x])

    # the x's should be exaclty as they are in `points`
    optimizer = Optimizer(
        base_estimator=surrogate(random_state=1),
        dimensions=[Real(-5.0, 10.0), Real(0.0, 15.0)],
        acq_optimizer="sampling",
        random_state=1,
    )
    for i in range(n_steps):
        x = optimizer.ask(n_points, strategy)

        assert points[i] == x

        optimizer.tell(x, [branin(v) for v in x])
Example #2
0
def test_all_points_different(strategy, surrogate):
    """
    Tests whether the parallel optimizer always generates
    different points to evaluate.

    Parameters
    ----------
    * `strategy` [string]:
        Name of the strategy to use during optimization.

    * `surrogate` [scikit-optimize surrogate class]:
        A class of the scikit-optimize surrogate used in Optimizer.
    """
    optimizer = Optimizer(
        base_estimator=surrogate(),
        dimensions=[Real(-5.0, 10.0), Real(0.0, 15.0)],
        acq_optimizer="sampling",
        random_state=1,
    )

    tolerance = 1e-3  # distance above which points are assumed same
    for i in range(n_steps):
        x = optimizer.ask(n_points, strategy)
        optimizer.tell(x, [branin(v) for v in x])
        distances = pdist(x)
        assert all(distances > tolerance)
Example #3
0
def test_same_set_of_points_ask(strategy, surrogate):
    """
    For n_points not None, tests whether two consecutive calls to ask
    return the same sets of points.

    Parameters
    ----------
    * `strategy` [string]:
        Name of the strategy to use during optimization.

    * `surrogate` [scikit-optimize surrogate class]:
        A class of the scikit-optimize surrogate used in Optimizer.
    """

    optimizer = Optimizer(
        base_estimator=surrogate(),
        dimensions=[Real(-5.0, 10.0), Real(0.0, 15.0)],
        acq_optimizer="sampling",
        random_state=2,
    )

    for i in range(n_steps):
        xa = optimizer.ask(n_points, strategy)
        xb = optimizer.ask(n_points, strategy)
        optimizer.tell(xa, [branin(v) for v in xa])
        assert_equal(xa, xb)  # check if the sets of points generated are equal
Example #4
0
def test_dict_list_space_representation():
    """
    Tests whether the conversion of the dictionary and list representation
    of a point from a search space works properly.
    """

    chef_space = {
        "Cooking time": (0, 1200),  # in minutes
        "Main ingredient": [
            "cheese",
            "cherimoya",
            "chicken",
            "chard",
            "chocolate",
            "chicory",
        ],
        "Secondary ingredient": ["love", "passion", "dedication"],
        "Cooking temperature": (-273.16, 10000.0),  # in Celsius
    }

    opt = Optimizer(dimensions=dimensions_aslist(chef_space))
    point = opt.ask()

    # check if the back transformed point and original one are equivalent
    assert_equal(point, point_aslist(chef_space, point_asdict(chef_space, point)))
Example #5
0
def test_purely_categorical_space():
    # Test reproduces the bug in #908, make sure it doesn't come back
    dims = [Categorical(["a", "b", "c"]), Categorical(["A", "B", "C"])]
    optimizer = Optimizer(dims, n_initial_points=2, random_state=3)

    for _ in range(2):
        x = optimizer.ask()
        # before the fix this call raised an exception
        optimizer.tell(x, np.random.uniform())
Example #6
0
def test_dump_and_load_optimizer():
    base_estimator = ExtraTreesRegressor(random_state=2)
    opt = Optimizer(
        [(-2.0, 2.0)], base_estimator, n_initial_points=1, acq_optimizer="sampling"
    )

    opt.run(bench1, n_iter=3)

    with tempfile.TemporaryFile() as f:
        dump(opt, f)
        f.seek(0)
        load(f)
Example #7
0
def test_constant_liar_runs(strategy, surrogate, acq_func):
    """
    Tests whether the optimizer runs properly during the random
    initialization phase and beyond

    Parameters
    ----------
    * `strategy` [string]:
        Name of the strategy to use during optimization.

    * `surrogate` [scikit-optimize surrogate class]:
        A class of the scikit-optimize surrogate used in Optimizer.
    """
    optimizer = Optimizer(
        base_estimator=surrogate(),
        dimensions=[Real(-5.0, 10.0), Real(0.0, 15.0)],
        acq_func=acq_func,
        acq_optimizer="sampling",
        random_state=0,
    )

    # test arguments check
    assert_raises(ValueError, optimizer.ask, {"strategy": "cl_maen"})
    assert_raises(ValueError, optimizer.ask, {"n_points": "0"})
    assert_raises(ValueError, optimizer.ask, {"n_points": 0})

    for i in range(n_steps):
        x = optimizer.ask(n_points=n_points, strategy=strategy)
        # check if actually n_points was generated
        assert_equal(len(x), n_points)

        if "ps" in acq_func:
            optimizer.tell(x, [[branin(v), 1.1] for v in x])
        else:
            optimizer.tell(x, [branin(v) for v in x])
Example #8
0
def test_n_random_starts_Optimizer():
    # n_random_starts got renamed in v0.4
    et = ExtraTreesRegressor(random_state=2)
    with pytest.deprecated_call():
        Optimizer([(0, 1.0)], et, n_random_starts=10, acq_optimizer="sampling")