def main(_): logging.init(FLAGS.outfile, mode='w') text2ids.init() if FLAGS.add_global_scope: global_scope = FLAGS.global_scope if FLAGS.global_scope else FLAGS.algo else: global_scope = '' #with tf.variable_scope(FLAGS.algo): run()
text_strs = [] manager = Manager() texts_dict = manager.dict() text_strs_dict = manager.dict() gtexts = [[]] * FLAGS.threads gtext_strs = [[]] * FLAGS.threads #how many records generated counter = Value('i', 0) #the max num words of the longest text max_num_words = Value('i', 0) #the total words of all text sum_words = Value('i', 0) text2ids.init() def deal_file(file, thread_index): out_file = '{}/{}_{}'.format( FLAGS.output_directory, FLAGS.name, thread_index) if FLAGS.threads > 1 else '{}/{}'.format( FLAGS.output_directory, FLAGS.name) print('out_file:', out_file) with melt.tfrecords.Writer(out_file) as writer: num = 0 for line in open(file): if num % 1000 == 0: print(num) l = line.rstrip().split('\t') img = l[0]
def main(_): text2ids.init() predictor = melt.Predictor(FLAGS.model_dir) predict(predictor)