Example #1
0
def gen_predict_graph(predictor):
    """
  call it at last , build predict graph
  the probelm here is you can not change like beam size later...
  """
    #-----discriminant and generative
    score = predictor.init_predict()
    tf.add_to_collection('score', score)

    if algos_factory.is_discriminant(FLAGS.algo):
        tf.add_to_collection('textsim_score', predictor.textsim_score)

    #-----generateive
    if algos_factory.is_generative(FLAGS.algo):
        exact_score = predictor.init_predict(exact_loss=True)
        tf.add_to_collection('exact_score', exact_score)

        init_predict_text = functools.partial(predictor.init_predict_text,
                                              beam_size=FLAGS.beam_size,
                                              convert_unk=False)
        text, text_score = init_predict_text(
            decode_method=FLAGS.seq_decode_method)
        beam_text, beam_text_score = init_predict_text(
            decode_method=SeqDecodeMethod.beam)

        tf.add_to_collection('text', text)
        tf.add_to_collection('text_score', text_score)
        tf.add_to_collection('beam_text', beam_text)
        tf.add_to_collection('beam_text_score', beam_text_score)
Example #2
0
def gen_predict_graph(predictor):
    """
  call it at last , build predict graph
  the probelm here is you can not change like beam size later...
  """
    #-----discriminant and generative
    predictor.init_predict()  #here self add all score ops
    #-----generateive
    if algos_factory.is_generative(FLAGS.algo):
        exact_score = predictor.init_predict(exact_loss=True)
        tf.add_to_collection('exact_score', exact_score)
        exact_prob = predictor.init_predict(exact_prob=True)
        tf.add_to_collection('exact_prob', exact_prob)

        ##TODO
        # beam_size = tf.placeholder_with_default(FLAGS.beam_size, shape=None)
        # tf.add_to_collection('beam_size_feed', beam_size)

        init_predict_text = functools.partial(predictor.init_predict_text,
                                              beam_size=FLAGS.beam_size,
                                              convert_unk=False)
        text, text_score = init_predict_text(
            decode_method=FLAGS.seq_decode_method)  #greedy
        init_predict_text(
            decode_method=SeqDecodeMethod.outgraph_beam)  #outgraph
        beam_text, beam_text_score = init_predict_text(
            decode_method=SeqDecodeMethod.ingraph_beam)  #ingraph must at last

        tf.add_to_collection('text', text)
        tf.add_to_collection('text_score', text_score)
        tf.add_to_collection('beam_text', beam_text)
        tf.add_to_collection('beam_text_score', beam_text_score)
Example #3
0
def gen_validate(input_app, input_results, trainer, predictor):
    gen_eval_feed_dict = None
    eval_ops = None
    train_with_validation = input_results[
        input_app.input_valid_name] is not None
    deal_eval_results = None
    if train_with_validation and not FLAGS.train_only:
        eval_image_name, eval_image_feature, eval_text, eval_text_str = input_results[
            input_app.input_valid_name]
        if input_results[input_app.input_valid_neg_name]:
            eval_neg_image_name, eval_neg_image_feature, eval_neg_text, eval_neg_text_str = input_results[
                input_app.input_valid_neg_name]

        if not FLAGS.neg_left:
            eval_neg_image = None
        eval_neg_text_ = eval_neg_text
        if not FLAGS.neg_right:
            eval_neg_text_ = None
        if algos_factory.is_generative(FLAGS.algo):
            eval_neg_image_feature = None
            eval_neg_text_ = None

        eval_loss = trainer.build_train_graph(eval_image_feature, eval_text,
                                              eval_neg_image_feature,
                                              eval_neg_text_)
        eval_scores = tf.get_collection('scores')[-1]
        eval_ops = [eval_loss]

        if algos_factory.is_generative(FLAGS.algo):
            eval_neg_text = None
            eval_neg_text_str = None

        if FLAGS.show_eval and (predictor is not None):
            eval_ops, deal_eval_results = \
              gen_evalulate(
                  input_app,
                  input_results,
                  predictor,
                  eval_ops,
                  eval_scores,
                  eval_neg_text,
                  eval_neg_text_str)
        else:
            deal_eval_results = lambda x: melt.print_results(
                x, ['eval_batch_loss'])

    return eval_ops, gen_eval_feed_dict, deal_eval_results
def gen_predict_graph(predictor):
    """
  call it at last , build predict graph
  the probelm here is you can not change like beam size later...
  """
    #-----discriminant and generative
    predictor.init_predict()  #here self add all score ops
    #-----generateive
    if algos_factory.is_generative(FLAGS.algo):
        exact_score = predictor.init_predict(exact_loss=True)
        tf.add_to_collection('exact_score', exact_score)
        exact_prob = predictor.init_predict(exact_prob=True)
        tf.add_to_collection('exact_prob', exact_prob)

        ##TODO
        # beam_size = tf.placeholder_with_default(FLAGS.beam_size, shape=None)
        # tf.add_to_collection('beam_size_feed', beam_size)

        init_predict_text = predictor.init_predict_text

        text, text_score = init_predict_text(
            decode_method=FLAGS.seq_decode_method)  #greedy

        tf.add_to_collection('text', text)
        tf.add_to_collection('text_score', text_score)

        try:
            init_predict_text(decode_method=SeqDecodeMethod.outgraph_beam,
                              beam_size=FLAGS.beam_size)  #outgraph
        except Exception:
            print(traceback.format_exc(), file=sys.stderr)
            print('warning: outgraph beam search not supported',
                  file=sys.stderr)
            pass

        full_text, full_text_score = init_predict_text(
            decode_method=SeqDecodeMethod.ingraph_beam, beam_size=100)
        tf.add_to_collection('full_text', full_text)
        tf.add_to_collection('full_text_score', full_text_score)

        #if not FLAGS.reinforcement_learning:
        beam_text, beam_text_score = init_predict_text(
            decode_method=SeqDecodeMethod.ingraph_beam,
            beam_size=FLAGS.beam_size,
            logprobs_history=True,
            alignment_history=True)  #ingraph must at last
        #else:
        #  beam_text, beam_text_score = tf.expand_dims(text, 1), tf.expand_dims(text_score, 1)

        tf.add_to_collection('beam_text', beam_text)
        tf.add_to_collection('beam_text_score', beam_text_score)
        tf.add_to_collection('beam_logprobs_history',
                             predictor.decoder.log_probs_history)
        tf.add_to_collection('beam_alignment_history',
                             predictor.decoder.alignment_history)
        predictor.logprobs_history = False
        predictor.alignment_history = False
Example #5
0
def train_process(trainer, predictor=None):
    input_app = InputApp.InputApp()
    input_results = input_app.gen_input()

    with tf.variable_scope(FLAGS.main_scope) as scope:
        ops, gen_feed_dict, deal_results = gen_train(input_app, input_results,
                                                     trainer)

        scope.reuse_variables()

        #saving predict graph, so later can direclty predict without building from scratch
        #also used in gen validate if you want to use direclty predict as evaluate per epoch
        if predictor is not None and FLAGS.gen_predict:
            gen_predict_graph(predictor)

        eval_ops, gen_eval_feed_dict, deal_eval_results = gen_validate(
            input_app, input_results, trainer, predictor)

        metric_eval_fn = None
        if FLAGS.metric_eval:
            #generative can do this also but it is slow so just ingore this
            if not algos_factory.is_generative(FLAGS.algo):
                metric_eval_fn = lambda: evaluator.evaluate_scores(predictor,
                                                                   random=True)

    init_fn = None
    summary_excls = None
    if not FLAGS.pre_calc_image_feature:
        init_fn = melt.image.create_image_model_init_fn(
            FLAGS.image_model_name, FLAGS.image_checkpoint_file)

        if predictor is not None and FLAGS.gen_predict:
            #need to excl InceptionV3 summarys why inceptionV3 op might need image_feature_feed if gen_predict
            #gen_eval_feed_dict = lambda: {predictor.image_feature_feed: [melt.image.read_image(FLAGS.one_image)]}
            #gen_eval_feed_dict = lambda: {predictor.image_feature_feed: ['']}
            summary_excls = [FLAGS.image_model_name]

    melt.print_global_varaiables()
    melt.apps.train_flow(
        ops,
        gen_feed_dict_fn=gen_feed_dict,
        deal_results_fn=deal_results,
        eval_ops=eval_ops,
        gen_eval_feed_dict_fn=gen_eval_feed_dict,
        deal_eval_results_fn=deal_eval_results,
        optimizer=FLAGS.optimizer,
        learning_rate=FLAGS.learning_rate,
        num_steps_per_epoch=input_app.num_steps_per_epoch,
        model_dir=FLAGS.model_dir,
        metric_eval_fn=metric_eval_fn,
        summary_excls=summary_excls,
        init_fn=init_fn,
        sess=sess
    )  #notice if use melt.constant in predictor then must pass sess
Example #6
0
def train():
    input_app = InputApp.InputApp()
    input_results = input_app.gen_input()

    with tf.variable_scope(FLAGS.main_scope) as scope:
        trainer, predictor = algos_factory.gen_trainer_and_predictor(
            FLAGS.algo)
        logging.info('trainer:{}'.format(trainer))
        logging.info('predictor:{}'.format(predictor))

        ops, gen_feed_dict, deal_results = gen_train(input_app, input_results,
                                                     trainer)
        scope.reuse_variables()
        algos_factory.set_eval_mode(trainer)

        if predictor is not None and FLAGS.gen_predict:
            beam_text, beam_text_score = gen_predict_graph(predictor)

        eval_ops, gen_eval_feed_dict, deal_eval_results = gen_validate(
            input_app, input_results, trainer, predictor)

        metric_eval_fn = None
        if FLAGS.metric_eval:
            if not algos_factory.is_generative(
                    FLAGS.algo) or FLAGS.assistant_model_dir:
                metric_eval_fn = lambda: evaluator.evaluate_scores(predictor,
                                                                   random=True)

    melt.print_global_varaiables()
    melt.apps.train_flow(
        ops,
        gen_feed_dict_fn=gen_feed_dict,
        deal_results_fn=deal_results,
        eval_ops=eval_ops,
        gen_eval_feed_dict_fn=gen_eval_feed_dict,
        deal_eval_results_fn=deal_eval_results,
        optimizer=FLAGS.optimizer,
        learning_rate=FLAGS.learning_rate,
        num_steps_per_epoch=input_app.num_steps_per_epoch,
        model_dir=FLAGS.model_dir,
        metric_eval_fn=metric_eval_fn,
        restore_scope=
        global_scope,  #only restore global scope as might evaluator has another predictor in graph with another scope name like dual_bow
        sess=sess
    )  #notice if use melt.constant in predictor then must pass sess
Example #7
0
def train():
    input_app = InputApp.InputApp()
    input_results = input_app.gen_input()

    with tf.variable_scope(FLAGS.main_scope) as scope:
        trainer, predictor = algos_factory.gen_trainer_and_predictor(
            FLAGS.algo)
        logging.info('trainer:{}'.format(trainer))
        logging.info('predictor:{}'.format(predictor))

        algos_factory.set_eval_mode(trainer)
        ops, gen_feed_dict, deal_results = gen_train(input_app, input_results,
                                                     trainer)
        scope.reuse_variables()
        algos_factory.set_eval_mode(trainer)

        if predictor is not None and FLAGS.gen_predict:
            gen_predict_graph(predictor)

        eval_ops, gen_eval_feed_dict, deal_eval_results = gen_validate(
            input_app, input_results, trainer, predictor)

        metric_eval_fn = None
        if FLAGS.metric_eval:
            #generative can do this also but it is slow so just ingore this
            if not algos_factory.is_generative(FLAGS.algo):
                metric_eval_fn = lambda: evaluator.evaluate_scores(predictor,
                                                                   random=True)

    melt.print_global_varaiables()
    melt.apps.train_flow(
        ops,
        gen_feed_dict_fn=gen_feed_dict,
        deal_results_fn=deal_results,
        eval_ops=eval_ops,
        gen_eval_feed_dict_fn=gen_eval_feed_dict,
        deal_eval_results_fn=deal_eval_results,
        optimizer=FLAGS.optimizer,
        learning_rate=FLAGS.learning_rate,
        num_steps_per_epoch=input_app.num_steps_per_epoch,
        model_dir=FLAGS.model_dir,
        metric_eval_fn=metric_eval_fn,
        sess=sess
    )  #notice if use melt.constant in predictor then must pass sess
Example #8
0
def train_process(trainer, predictor=None):
  input_app = InputApp.InputApp()
  input_results = input_app.gen_input()

  with tf.variable_scope(FLAGS.main_scope) as scope:
    ops, gen_feed_dict, deal_results = gen_train(
      input_app, 
      input_results, 
      trainer)
    scope.reuse_variables()

    if predictor is not None and FLAGS.gen_predict:
      beam_text, beam_text_score = gen_predict_graph(predictor)

    eval_ops, gen_eval_feed_dict, deal_eval_results = gen_validate(
      input_app, 
      input_results, 
      trainer, 
      predictor)

    metric_eval_fn = None
    if FLAGS.metric_eval:
      #generative can do this also but it is slow so just ingore this
      if not algos_factory.is_generative(FLAGS.algo): 
        metric_eval_fn = lambda: evaluator.evaluate_scores(predictor, random=True)

  if FLAGS.mode == 'train':
    melt.print_global_varaiables()
    melt.apps.train_flow(ops, 
                         gen_feed_dict_fn=gen_feed_dict,
                         deal_results_fn=deal_results,
                         eval_ops=eval_ops,
                         gen_eval_feed_dict_fn=gen_eval_feed_dict,
                         deal_eval_results_fn=deal_eval_results,
                         optimizer=FLAGS.optimizer,
                         learning_rate=FLAGS.learning_rate,
                         num_steps_per_epoch=input_app.num_steps_per_epoch,
                         model_dir=FLAGS.model_dir,
                         metric_eval_fn=metric_eval_fn,
                         sess=sess)#notice if use melt.constant in predictor then must pass sess
  else: #test predict
    predictor.load(FLAGS.model_dir)
    import conf  
    from conf import TEXT_MAX_WORDS, INPUT_TEXT_MAX_WORDS, NUM_RESERVED_IDS, ENCODE_UNK

    print('-------------------------', tf.get_collection('scores'))

    #TODO: now copy from prpare/gen-records.py
    def _text2ids(text, max_words):
      word_ids = text2ids.text2ids(text, 
                                   seg_method=FLAGS.seg_method, 
                                   feed_single=FLAGS.feed_single, 
                                   allow_all_zero=True, 
                                   pad=False)
      word_ids_length = len(word_ids)
      word_ids = word_ids[:max_words]
      word_ids = gezi.pad(word_ids, max_words, 0)
      return word_ids

    input_texts = [
                   #'包邮买二送一性感女内裤低腰诱惑透视蕾丝露臀大蝴蝶三角内裤女夏-淘宝网',
                   '大棚辣椒果实变小怎么办,大棚辣椒果实变小防治措施',
                   ]

    for input_text in input_texts:
      word_ids = _text2ids(input_text, INPUT_TEXT_MAX_WORDS)
      print('word_ids', word_ids, 'len:', len(word_ids))
      print(text2ids.ids2text(word_ids))
      #similar as inference.py this is only ok for no attention mode TODO FIXME
      texts, scores = sess.run([tf.get_collection('text')[0], tf.get_collection('text_score')[0]], 
                             feed_dict={'seq2seq/model_init_1/input_text:0' : [word_ids]})
      print(texts[0], text2ids.ids2text(texts[0]), scores[0])

      texts, scores  = sess.run([beam_text, beam_text_score], 
                               feed_dict={predictor.input_text_feed: [word_ids]})

      texts = texts[0]
      scores = scores[0]
      for text, score in zip(texts, scores):
        print(text, text2ids.ids2text(text), score)
    
    input_texts = [
                   '大棚辣椒果实变小怎么办,大棚辣椒果实变小防治措施',
                   #'包邮买二送一性感女内裤低腰诱惑透视蕾丝露臀大蝴蝶三角内裤女夏-淘宝网',
                   "宝宝太胖怎么办呢",
                   '大棚辣椒果实变小怎么办,大棚辣椒果实变小防治措施',
                   #'大棚辣椒果实变小怎么办,大棚辣椒果实变小防治措施',
                   #'邹红建是阿拉斯加',
                   ]

    word_ids_list = [_text2ids(input_text, INPUT_TEXT_MAX_WORDS) for input_text in input_texts]
    timer = gezi.Timer()
    texts_list, scores_list = sess.run([beam_text, beam_text_score], 
                               feed_dict={predictor.input_text_feed: word_ids_list})
    
    for texts, scores in zip(texts_list, scores_list):
      for text, score in zip(texts, scores):
        print(text, text2ids.ids2text(text), score, math.log(score))

    print('beam_search using time(ms):', timer.elapsed_ms())
Example #9
0
def train():
    input_app = InputApp.InputApp()
    input_results = input_app.gen_input()

    with tf.variable_scope(FLAGS.main_scope) as scope:
        trainer, predictor = algos_factory.gen_trainer_and_predictor(
            FLAGS.algo)
        logging.info('trainer:{}'.format(trainer))
        logging.info('predictor:{}'.format(predictor))

        ops, gen_feed_dict, deal_results = gen_train(input_app, input_results,
                                                     trainer)

        scope.reuse_variables()
        algos_factory.set_eval_mode(trainer)

        #saving predict graph, so later can direclty predict without building from scratch
        #also used in gen validate if you want to use direclty predict as evaluate per epoch
        if predictor is not None and FLAGS.gen_predict:
            gen_predict_graph(predictor)

        eval_ops, gen_eval_feed_dict, deal_eval_results = gen_validate(
            input_app, input_results, trainer, predictor)

        metric_eval_fn = None
        if FLAGS.metric_eval:
            eval_rank = FLAGS.eval_rank and (not algos_factory.is_generative(
                FLAGS.algo) or FLAGS.assistant_model_dir)
            eval_translation = FLAGS.eval_translation and algos_factory.is_generative(
                FLAGS.algo)
            metric_eval_fn = lambda: evaluator.evaluate(predictor,
                                                        random=True,
                                                        eval_rank=eval_rank,
                                                        eval_translation=
                                                        eval_translation)

    init_fn = None
    restore_fn = None
    summary_excls = None

    if not FLAGS.pre_calc_image_feature:
        init_fn = melt.image.image_processing.create_image_model_init_fn(
            FLAGS.image_model_name, FLAGS.image_checkpoint_file)
        if melt.checkpoint_exists_in(FLAGS.model_dir):
            if not melt.varname_in_checkpoint(FLAGS.image_model_name,
                                              FLAGS.model_dir):
                restore_fn = init_fn

    #melt.print_global_varaiables()
    melt.apps.train_flow(
        ops,
        gen_feed_dict_fn=gen_feed_dict,
        deal_results_fn=deal_results,
        eval_ops=eval_ops,
        gen_eval_feed_dict_fn=gen_eval_feed_dict,
        deal_eval_results_fn=deal_eval_results,
        optimizer=FLAGS.optimizer,
        learning_rate=FLAGS.learning_rate,
        num_steps_per_epoch=input_app.num_steps_per_epoch,
        model_dir=FLAGS.model_dir,
        metric_eval_fn=metric_eval_fn,
        summary_excls=summary_excls,
        init_fn=init_fn,
        restore_fn=restore_fn,
        sess=sess
    )  #notice if use melt.constant in predictor then must pass sess
def train():
    input_app = InputApp.InputApp()
    input_results = input_app.gen_input()
    global_scope = melt.apps.train.get_global_scope()

    with tf.variable_scope(global_scope) as global_scope:
        with tf.variable_scope(FLAGS.main_scope) as scope:
            trainer, validator, predictor = algos_factory.gen_all(FLAGS.algo)

            if FLAGS.reinforcement_learning:
                from deepiu.image_caption.algos.show_and_tell import RLInfo
                trainer.rl = RLInfo()

            if FLAGS.scene_model:
                #TODO scene model not support show_eval right now due to batch size eg 3 for show_eval
                from deepiu.image_caption.algos.show_and_tell import SceneInfo
                trainer.scene = SceneInfo(FLAGS.batch_size)
                validator.scene = SceneInfo(FLAGS.eval_batch_size)
                predictor.scene = SceneInfo()

            logging.info('trainer:{}'.format(trainer))
            logging.info('predictor:{}'.format(predictor))

            ops, gen_feed_dict, deal_results = gen_train(
                input_app, input_results, trainer)

            scope.reuse_variables()

            #saving predict graph, so later can direclty predict without building from scratch
            #also used in gen validate if you want to use direclty predict as evaluate per epoch
            if predictor is not None and FLAGS.gen_predict:
                gen_predict_graph(predictor)

            eval_ops, gen_eval_feed_dict, deal_eval_results = gen_validate(
                input_app, input_results, validator, predictor)

            metric_eval_fn = None
            if FLAGS.metric_eval:
                if FLAGS.scene_model:
                    evaluator.gen_feed_dict_fn = lambda image_features: gen_predict_scene_feed_dict(
                        predictor, image_features)

                eval_rank = FLAGS.eval_rank and (
                    not algos_factory.is_generative(FLAGS.algo)
                    or FLAGS.assistant_model_dir)
                eval_translation = FLAGS.eval_translation and algos_factory.is_generative(
                    FLAGS.algo)
                metric_eval_fn = lambda: evaluator.evaluate(
                    predictor,
                    random=True,
                    eval_rank=eval_rank,
                    eval_translation=eval_translation)

    # NOTCIE in empty scope now, image model need to escape all scopes!
    summary_excls = None
    init_fn, restore_fn = image_util.get_init_restore_fn()

    with tf.variable_scope(global_scope):
        #melt.print_global_varaiables()
        melt.apps.train_flow(
            ops,
            names=names,
            gen_feed_dict_fn=gen_feed_dict,
            deal_results_fn=deal_results,
            eval_ops=eval_ops,
            eval_names=eval_names,
            gen_eval_feed_dict_fn=gen_eval_feed_dict,
            deal_eval_results_fn=deal_eval_results,
            optimizer=FLAGS.optimizer,
            learning_rate=FLAGS.learning_rate,
            num_steps_per_epoch=input_app.num_steps_per_epoch,
            metric_eval_fn=metric_eval_fn,
            summary_excls=summary_excls,
            init_fn=init_fn,
            restore_fn=restore_fn,
            sess=sess
        )  # notice if use melt.constant in predictor then must pass sess
def gen_validate(input_app, input_results, validator, predictor):
    gen_eval_feed_dict = None
    eval_ops = None
    train_with_validation = input_results[
        input_app.input_valid_name] is not None
    scene_train_with_validation = input_results[
        input_app.scene_input_valid_name] is not None
    deal_eval_results = None
    if train_with_validation and not FLAGS.train_only:
        eval_image_name, eval_image_feature, eval_text, eval_text_str = input_results[
            input_app.input_valid_name]
        global geval_image_name
        geval_image_name = eval_image_name

        if input_results[input_app.input_valid_neg_name]:
            eval_neg_image_name, eval_neg_image_feature, eval_neg_text, eval_neg_text_str = input_results[
                input_app.input_valid_neg_name]

        if not FLAGS.neg_left:
            eval_neg_image_feature = None
        eval_neg_text_ = eval_neg_text
        if not FLAGS.neg_right:
            eval_neg_text_ = None
        if algos_factory.is_generative(FLAGS.algo):
            eval_neg_image_feature = None
            eval_neg_text_ = None

        global eval_names
        with tf.device('/gpu:0'):
            eval_main_loss = validator.build_train_graph(
                eval_image_feature, eval_text, eval_neg_image_feature,
                eval_neg_text_)
        eval_scores = tf.get_collection('eval_scores')[-1]
        eval_ops = [eval_main_loss]
        eval_names = ['eval_main_loss']

        if scene_train_with_validation:
            eval_image_name, eval_image, eval_label, eval_text_str = input_results[
                input_app.scene_input_valid_name]

            with tf.device('/gpu:1'):
                eval_scene_loss = validator.build_scene_graph(
                    eval_image, eval_label)
            eval_loss = eval_main_loss + eval_scene_loss
            eval_ops.insert(0, eval_loss)
            eval_names.insert(0, 'eal_loss')
            eval_ops += [
                eval_scene_loss, validator.scene_recall_at_1,
                validator.scene_recall_at_k
            ]
            eval_names += [
                'eval_scene_loss', 'eval_scene_recall@1', 'eval_scene_recall@3'
            ]

        if algos_factory.is_generative(FLAGS.algo):
            eval_neg_text = None
            eval_neg_text_str = None

        if FLAGS.show_eval and (predictor is not None):
            eval_ops, deal_eval_results = \
              gen_evalulate(
                  input_app,
                  input_results,
                  predictor,
                  eval_ops,
                  eval_scores,
                  eval_neg_text,
                  eval_neg_text_str)
        else:
            #deal_eval_results = None
            def _deal_eval_results(results):
                print(results)

            deal_eval_results = _deal_eval_results

    def _gen_feed_dict():
        feed_dict = {}
        return feed_dict

    def _gen_scene_feed_dict():
        return gen_scene_feed_dict(validator, geval_image_name)

    def _gen_all_feed_dict():
        feed_dict = _gen_feed_dict()
        if FLAGS.scene_model:
            feed_dict = gezi.merge_dicts(feed_dict, _gen_scene_feed_dict())
        return feed_dict

    gen_eval_feed_dict = _gen_all_feed_dict
    return eval_ops, gen_eval_feed_dict, deal_eval_results