def main(): """Create the model and start the training.""" print("=====> Set GPU for training") if args.cuda: print("====> use gpu id: '{}'".format(args.gpus)) os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus if not torch.cuda.is_available(): raise Exception( "No GPU found or Wrong gpu id, please run without --cuda") args.seed = random.randint(1, 10000) print("Random Seed: ", args.seed) torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) h, w = map(int, args.input_size.split(',')) input_size = (h, w) cudnn.enabled = True # Create network. print("=====> Building network") model = Res_Deeplab(num_classes=args.num_classes) # For a small batch size, it is better to keep # the statistics of the BN layers (running means and variances) # frozen, and to not update the values provided by the pre-trained model. # If is_training=True, the statistics will be updated during the training. # Note that is_training=False still updates BN parameters gamma (scale) and beta (offset) # if they are presented in var_list of the optimiser definition. print("=====> Loading pretrained weights") saved_state_dict = torch.load(args.restore_from) new_params = model.state_dict().copy() for i in saved_state_dict: #Scale.layer5.conv2d_list.3.weight i_parts = i.split('.') # print i_parts if not args.num_classes == 21 or not i_parts[1] == 'layer5': new_params['.'.join(i_parts[1:])] = saved_state_dict[i] model.load_state_dict(new_params) model.train() model.cuda() cudnn.benchmark = True if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) print('====> Computing network parameters') total_paramters = netParams(model) print('Total network parameters: ' + str(total_paramters)) print("=====> Preparing training data") trainloader = data.DataLoader(VOCDataSet(args.data_dir, args.data_list, max_iters=args.num_steps * args.batch_size, crop_size=input_size, scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN), batch_size=args.batch_size, shuffle=True, num_workers=2, pin_memory=True) optimizer = optim.SGD([{ 'params': get_1x_lr_params_NOscale(model), 'lr': args.learning_rate }, { 'params': get_10x_lr_params(model), 'lr': 10 * args.learning_rate }], lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) optimizer.zero_grad() interp = nn.Upsample(size=input_size, mode='bilinear') logFileLoc = args.snapshot_dir + args.logFile if os.path.isfile(logFileLoc): logger = open(logFileLoc, 'a') else: logger = open(logFileLoc, 'w') logger.write("Parameters: %s" % (str(total_paramters))) logger.write("\n%s\t\t%s" % ('iter', 'Loss(train)')) logger.flush() print("=====> Begin to train") for i_iter, batch in enumerate(trainloader): images, labels, _, _ = batch images = Variable(images).cuda() optimizer.zero_grad() adjust_learning_rate(optimizer, i_iter) pred = interp(model(images)) loss = loss_calc(pred, labels) loss.backward() optimizer.step() print('iter = ', i_iter, 'of', args.num_steps, 'completed, loss = ', loss.data.cpu().numpy()) logger.write("\n%d\t\t%.5f" % (i_iter, loss.data.cpu().numpy())) logger.flush() if i_iter >= args.num_steps - 1: print('save model ...') torch.save( model.state_dict(), osp.join(args.snapshot_dir, 'VOC12_scenes_' + str(args.num_steps) + '.pth')) break if i_iter % args.save_pred_every == 0 and i_iter != 0: print('taking snapshot ...') torch.save( model.state_dict(), osp.join(args.snapshot_dir, 'VOC12_scenes_' + str(i_iter) + '.pth')) logger.close() end = timeit.default_timer() print(end - start, 'seconds')
def main(): """Create the model and start the training.""" os.environ["CUDA_VISIBLE_DEVICES"]=str(args.gpu) h, w = map(int, args.input_size.split(',')) input_size = (h, w) cudnn.enabled = True # Create network. model = Res_Deeplab(num_classes=args.num_classes) # For a small batch size, it is better to keep # the statistics of the BN layers (running means and variances) # frozen, and to not update the values provided by the pre-trained model. # If is_training=True, the statistics will be updated during the training. # Note that is_training=False still updates BN parameters gamma (scale) and beta (offset) # if they are presented in var_list of the optimiser definition. # Load pretrained COCO dataset saved_state_dict = torch.load(args.restore_from) new_params = model.state_dict().copy() # for param_tensor in model.state_dict(): # print(model.state_dict()[param_tensor].size()) for i in saved_state_dict: #Scale.layer5.conv2d_list.3.weight i_parts = i.split('.') # print i_parts # layer 5 is end of network if not args.num_classes == 3 or not i_parts[1]=='layer5': new_params['.'.join(i_parts[1:])] = saved_state_dict[i] model.load_state_dict(new_params) model.cuda() # Moves all parameters into GPU cudnn.benchmark = True # Creating folder for saved parameters of model if not os.path.exists(args.snapshot_dir): print("Creating Checkpoint Folder") os.makedirs(args.snapshot_dir) berkeleyDataset = BerkeleyDataSet(args.data_dir, args.data_list, max_iters=args.num_steps*args.batch_size, crop_size=input_size, scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN) trainloader = data.DataLoader(berkeleyDataset, batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True) optimizer = optim.SGD([{'params': get_1x_lr_params_NOscale(model), 'lr': args.learning_rate }, {'params': get_10x_lr_params(model), 'lr': 10*args.learning_rate}], lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) optimizer.zero_grad() interp = nn.Upsample(size=input_size, mode='bilinear') model.train() train_loss = 0 for i_iter, batch in enumerate(trainloader): images, labels, _, _ = batch images = Variable(images).cuda() optimizer.zero_grad() adjust_learning_rate(optimizer, i_iter) pred = interp(model(images)) loss = loss_calc(pred, labels) loss.backward() optimizer.step() print('iter = ', i_iter, 'of', args.num_steps,'completed, loss = ', loss.item()*images.size(0)) if i_iter >= args.num_steps-1: print('save model ...') torch.save(model.state_dict(),osp.join(args.snapshot_dir, 'BDD_'+str(args.num_steps)+'.pth')) break if i_iter % args.save_pred_every == 0 and i_iter!=0: print('taking snapshot ...') torch.save(model.state_dict(),osp.join(args.snapshot_dir, 'BDD_'+str(i_iter)+'.pth')) end = timeit.default_timer() print(end-start,'seconds')
def main(): """Create the model and start the training.""" os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu h, w = map(int, args.input_size.split(',')) input_size = (h, w) cudnn.enabled = True torch.manual_seed(args.random_seed) model = Res_Deeplab(num_classes=args.num_classes) model = torch.nn.DataParallel(model) optimizer = optim.SGD([{ 'params': get_1x_lr_params_NOscale(model.module), 'lr': args.learning_rate }, { 'params': get_10x_lr_params(model.module), 'lr': 10 * args.learning_rate }], lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) if args.fine_tune: # fine tune from coco dataset saved_state_dict = torch.load(args.restore_from) new_params = model.state_dict().copy() for i in saved_state_dict: # Scale.layer5.conv2d_list.3.weight i_parts = i.split('.') if i_parts[1] != 'layer5': new_params[i.replace('Scale', 'module')] = saved_state_dict[i] model.load_state_dict(new_params) elif args.restore_from: if os.path.isfile(args.restore_from): print("=> loading checkpoint '{}'".format(args.restore_from)) checkpoint = torch.load(args.restore_from) try: if args.set_start: args.start_step = int( math.ceil(checkpoint['example'] / args.batch_size)) model.load_state_dict(checkpoint['state_dict']) print("=> loaded checkpoint '{}' (step {})".format( args.restore_from, args.start_step)) except: model.load_state_dict(checkpoint) print("=> loaded checkpoint '{}'".format(args.restore_from)) else: print("=> no checkpoint found at '{}'".format(args.restore_from)) if not args.is_training: # Frozen BN # when training, the model will use the running means and the # running vars of the pretrained model. # But note that eval() doesn't turn off history tracking. print( "Freezing BN layers, that is taking BN as linear transform layer") model.eval() else: model.train() model.cuda() cudnn.benchmark = True trainloader = data.DataLoader(XiangyaTrain(args.data_list, crop_size=input_size, scale=args.random_scale, mirror=args.random_mirror, color_jitter=args.random_jitter, rotate=args.random_rotate, mean=IMG_MEAN), batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers) batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() pixel_losses = AverageMeter() patch_losses = AverageMeter() accuracy = AverageMeter() writer = SummaryWriter(args.snapshot_dir) cnt = 0 actual_step = args.start_step while actual_step < args.final_step: iter_end = timeit.default_timer() for i_iter, (images, labels, patch_name) in enumerate(trainloader): actual_step = int(args.start_step + cnt) data_time.update(timeit.default_timer() - iter_end) images = Variable(images).cuda() optimizer.zero_grad() adjust_learning_rate(optimizer, actual_step) # pred = interp(model(images)) pred = model(images) image = images.data.cpu().numpy()[0] del images # 0 Normal 1 DG 2 JR labels = resize_target(labels, pred.size(2)) pixel_loss, patch_loss = loss_calc(pred, labels) loss = pixel_loss.double() + args.loss_coeff * patch_loss losses.update(loss.item(), pred.size(0)) pixel_losses.update(pixel_loss.item(), pred.size(0)) patch_losses.update(patch_loss.item(), pred.size(0)) acc = _pixel_accuracy(pred.data.cpu().numpy(), labels.data.cpu().numpy()) accuracy.update(acc, pred.size(0)) loss.backward() optimizer.step() batch_time.update(timeit.default_timer() - iter_end) iter_end = timeit.default_timer() if actual_step % args.print_freq == 0: print( 'iter: [{0}]{1}/{2}\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Pixel Loss {pixel_loss.val:.4f} ({pixel_loss.avg:.4f})\t' 'Patch_Loss {patch_loss.val:.4f} ({patch_loss.avg:.4f})\t' 'Pixel Accuracy {accuracy.val:.3f} ({accuracy.avg:.3f})'. format(cnt, actual_step, args.final_step, batch_time=batch_time, data_time=data_time, loss=losses, pixel_loss=pixel_losses, patch_loss=patch_losses, accuracy=accuracy)) writer.add_scalar("train_loss", losses.avg, actual_step) writer.add_scalar("pixel_loss", pixel_losses.avg, actual_step) writer.add_scalar("patch_loss", patch_losses.avg, actual_step) writer.add_scalar("pixel_accuracy", accuracy.avg, actual_step) writer.add_scalar("lr", optimizer.param_groups[0]['lr'], actual_step) # TODO complete this part using writer if actual_step % args.save_img_freq == 0: msk_size = pred.size(2) image = image.transpose(1, 2, 0) image = cv2.resize(image, (msk_size, msk_size), interpolation=cv2.INTER_NEAREST) image += IMG_MEAN image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) label = labels.data.cpu().numpy()[0] label = np.repeat(254, msk_size) - label * 127 single_pred = pred.data.cpu().numpy()[0].argmax(axis=0) single_pred = single_pred * 127 new_im = Image.new('RGB', (msk_size * 3, msk_size)) new_im.paste(Image.fromarray(image.astype('uint8'), 'RGB'), (0, 0)) new_im.paste(Image.fromarray(single_pred.astype('uint8'), 'L'), (msk_size, 0)) new_im.paste(Image.fromarray(label.astype('uint8'), 'L'), (msk_size * 2, 0)) new_im_name = 'B' + str(args.batch_size) + '_S' + str( actual_step) + '_' + patch_name[0] new_im_file = os.path.join(args.img_dir, new_im_name) new_im.save(new_im_file) if actual_step % args.save_pred_every == 0 and cnt != 0: print('taking snapshot ...') torch.save( { 'example': actual_step * args.batch_size, 'state_dict': model.state_dict() }, osp.join( args.snapshot_dir, 'Xiangya_Deeplab_B' + str(args.batch_size) + '_S' + str(actual_step) + '.pth')) cnt += 1 print('save the final model ...') torch.save( { 'example': actual_step * args.batch_size, 'state_dict': model.state_dict() }, osp.join( args.snapshot_dir, 'Xiangya_Deeplab_B' + str(args.batch_size) + '_S' + str(actual_step) + '.pth')) end = timeit.default_timer() print(end - start, 'seconds')
def main(): """Create the model and start the training.""" if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) logger = util.set_logger(args.snapshot_dir, args.log_file, args.debug) logger.info('start with arguments %s', args) h, w = map(int, args.input_size.split(',')) input_size = (h, w) lscale, hscale = map(float, args.train_scale.split(',')) train_scale = (lscale, hscale) cudnn.enabled = True # Create network. model = Res_Deeplab(num_classes=args.num_classes) #saved_state_dict = torch.load(args.restore_from) #new_params = model.state_dict().copy() #for i in saved_state_dict: # #Scale.layer5.conv2d_list.3.weight # i_parts = i.split('.') # # print i_parts # if not args.num_classes == 21 or not i_parts[1]=='layer5': # new_params['.'.join(i_parts[1:])] = saved_state_dict[i] model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } saved_state_dict = torch.utils.model_zoo.load_url(model_urls['resnet101']) # coco pretrained parameters: # saved_state_dict = torch.load(args.restore_from) new_params = model.state_dict().copy() for i in saved_state_dict: #Scale.layer5.conv2d_list.3.weight i_parts = str(i).split('.') # print i_parts if not i_parts[0] == 'fc': new_params['.'.join(i_parts[0:])] = saved_state_dict[i] model.load_state_dict(new_params) #model.float() model.eval() # use_global_stats = True #model.train() device = torch.device("cuda:" + str(args.gpu)) model.to(device) cudnn.benchmark = True trainloader = data.DataLoader(GTA5DataSet(args.data_dir, args.data_list, max_iters=args.num_steps * args.batch_size, crop_size=input_size, train_scale=train_scale, scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN, std=IMG_STD), batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=args.pin_memory) optimizer = optim.SGD([{ 'params': get_1x_lr_params_NOscale(model), 'lr': args.learning_rate }, { 'params': get_10x_lr_params(model), 'lr': 10 * args.learning_rate }], lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) optimizer.zero_grad() interp = nn.Upsample(size=input_size, mode='bilinear', align_corners=True) for i_iter, batch in enumerate(trainloader): images, labels, _, _ = batch images = images.to(device) labels = labels.long().to(device) optimizer.zero_grad() adjust_learning_rate(optimizer, i_iter) pred = interp(model(images)) loss = loss_calc(pred, labels) loss.backward() optimizer.step() # print('iter = ', i_iter, 'of', args.num_steps,'completed, loss = ', loss.data.cpu().numpy()) logger.info('iter = {} of {} completed, loss = {:.4f}'.format( i_iter, args.num_steps, loss.data.cpu().numpy())) if i_iter >= args.num_steps - 1: print('save model ...') torch.save( model.state_dict(), osp.join(args.snapshot_dir, 'VOC12_scenes_' + str(args.num_steps) + '.pth')) break if i_iter % args.save_pred_every == 0 and i_iter != 0: print('taking snapshot ...') torch.save( model.state_dict(), osp.join(args.snapshot_dir, 'VOC12_scenes_' + str(i_iter) + '.pth')) end = timeit.default_timer() print(end - start, 'seconds')
def main(): """Create the model and start the training.""" h, w = map(int, args.input_size.split(',')) input_size = (h, w) cudnn.enabled = True gpu = args.gpu # Create network. model = Res_Deeplab(num_classes=args.num_classes) # For a small batch size, it is better to keep # the statistics of the BN layers (running means and variances) # frozen, and to not update the values provided by the pre-trained model. # If is_training=True, the statistics will be updated during the training. # Note that is_training=False still updates BN parameters gamma (scale) and beta (offset) # if they are presented in var_list of the optimiser definition. saved_state_dict = torch.load(args.restore_from) new_params = model.state_dict().copy() for i in saved_state_dict: #Scale.layer5.conv2d_list.3.weight i_parts = i.split('.') # print i_parts if not args.num_classes == 21 or not i_parts[1] == 'layer5': new_params['.'.join(i_parts[1:])] = saved_state_dict[i] model.load_state_dict(new_params) #model.float() #model.eval() # use_global_stats = True model.train() model.cuda(args.gpu) cudnn.benchmark = True if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) trainloader = data.DataLoader(VOCDataSet(args.data_dir, args.data_list, max_iters=args.num_steps * args.batch_size, crop_size=input_size, scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN), batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True) optimizer = optim.SGD([{ 'params': get_1x_lr_params_NOscale(model), 'lr': args.learning_rate }, { 'params': get_10x_lr_params(model), 'lr': 10 * args.learning_rate }], lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) optimizer.zero_grad() interp = nn.Upsample(size=input_size, mode='bilinear') for i_iter, batch in enumerate(trainloader): images, labels, _, _ = batch images = Variable(images).cuda(args.gpu) optimizer.zero_grad() adjust_learning_rate(optimizer, i_iter) pred = interp(model(images)) loss = loss_calc(pred, labels, args.gpu) loss.backward() optimizer.step() print 'iter = ', i_iter, 'of', args.num_steps, 'completed, loss = ', loss.data.cpu( ).numpy() if i_iter >= args.num_steps - 1: print 'save model ...' torch.save( model.state_dict(), osp.join(args.snapshot_dir, 'VOC12_scenes_' + str(args.num_steps) + '.pth')) break if i_iter % args.save_pred_every == 0 and i_iter != 0: print 'taking snapshot ...' torch.save( model.state_dict(), osp.join(args.snapshot_dir, 'VOC12_scenes_' + str(i_iter) + '.pth')) end = timeit.default_timer() print end - start, 'seconds'
def main(): """Create the model and start the training.""" h, w = map(int, args.input_size.split(',')) input_size = (h, w) cudnn.enabled = True gpu = args.gpu # Create network. model = Res_Deeplab(num_classes=args.num_classes) # For a small batch size, it is better to keep # the statistics of the BN layers (running means and variances) # frozen, and to not update the values provided by the pre-trained model. # If is_training=True, the statistics will be updated during the training. # Note that is_training=False still updates BN parameters gamma (scale) and beta (offset) # if they are presented in var_list of the optimiser definition. saved_state_dict = torch.load(args.restore_from) new_params = model.state_dict().copy() for i in saved_state_dict: #Scale.layer5.conv2d_list.3.weight i_parts = i.split('.') # print i_parts if not args.num_classes == 21 or not i_parts[1] == 'layer5': new_params['.'.join(i_parts[1:])] = saved_state_dict[i] model.load_state_dict(new_params) #model.float() #model.eval() # use_global_stats = True model.train() model.cuda(args.gpu) cudnn.benchmark = True if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) trainloader = data.DataLoader(VOCDataSet(args.data_dir, args.data_list, max_iters=args.num_steps * args.iter_size, crop_size=input_size, scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN), batch_size=args.batch_size, shuffle=True, num_workers=1, pin_memory=True) optimizer = optim.SGD([{ 'params': get_1x_lr_params_NOscale(model), 'lr': args.learning_rate }, { 'params': get_10x_lr_params(model), 'lr': 10 * args.learning_rate }], lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) optimizer.zero_grad() b_loss = 0 for i_iter, batch in enumerate(trainloader): images, labels, _, _ = batch images, labels = Variable(images), labels.numpy() h, w = images.size()[2:] images075 = nn.Upsample(size=(int(h * 0.75), int(w * 0.75)), mode='bilinear')(images) images05 = nn.Upsample(size=(int(h * 0.5), int(w * 0.5)), mode='bilinear')(images) out = model(images.cuda(args.gpu)) out075 = model(images075.cuda(args.gpu)) out05 = model(images05.cuda(args.gpu)) o_h, o_w = out.size()[2:] interpo1 = nn.Upsample(size=(o_h, o_w), mode='bilinear') interpo2 = nn.Upsample(size=(h, w), mode='bilinear') out_max = interpo2( torch.max(torch.stack([out, interpo1(out075), interpo1(out05)]), dim=0)[0]) loss = loss_calc(out_max, labels, args.gpu) d1, d2 = float(labels.shape[1]), float(labels.shape[2]) loss100 = loss_calc( out, nd.zoom(labels, (1.0, out.size()[2] / d1, out.size()[3] / d2), order=0), args.gpu) loss075 = loss_calc( out075, nd.zoom(labels, (1.0, out075.size()[2] / d1, out075.size()[3] / d2), order=0), args.gpu) loss05 = loss_calc( out05, nd.zoom(labels, (1.0, out05.size()[2] / d1, out05.size()[3] / d2), order=0), args.gpu) loss_all = (loss + loss100 + loss075 + loss05) / args.iter_size loss_all.backward() b_loss += loss_all.data.cpu().numpy() b_iter = i_iter / args.iter_size if b_iter >= args.num_steps - 1: print 'save model ...' optimizer.step() torch.save( model.state_dict(), osp.join(args.snapshot_dir, 'VOC12_scenes_' + str(args.num_steps) + '.pth')) break if i_iter % args.iter_size == 0 and i_iter != 0: print 'iter = ', b_iter, 'of', args.num_steps, 'completed, loss = ', b_loss optimizer.step() adjust_learning_rate(optimizer, b_iter) optimizer.zero_grad() b_loss = 0 if i_iter % (args.save_pred_every * args.iter_size) == 0 and b_iter != 0: print 'taking snapshot ...' torch.save( model.state_dict(), osp.join(args.snapshot_dir, 'VOC12_scenes_' + str(b_iter) + '.pth')) end = timeit.timeit() print end - start, 'seconds'
def main(): """Create the model and start the evaluation process.""" device = torch.device("cuda:" + str(args.gpu)) if not os.path.exists(args.save): os.makedirs(args.save) logger = util.set_logger(args.save, args.log_file, args.debug) logger.info('start with arguments %s', args) x_num = 0 with open(args.data_list) as f: for _ in f.readlines(): x_num = x_num + 1 sys.path.insert(0, 'dataset/helpers') if args.data_src == 'gta' or args.data_src == 'cityscapes': from labels import id2label, trainId2label elif args.data_src == 'synthia': from labels_cityscapes_synthia import id2label, trainId2label # label_2_id = 255 * np.ones((256, )) for l in id2label: if l in (-1, 255): continue label_2_id[l] = id2label[l].trainId id_2_label = np.array( [trainId2label[_].id for _ in trainId2label if _ not in (-1, 255)]) valid_labels = sorted(set(id_2_label.ravel())) scorer = ScoreUpdater(valid_labels, args.num_classes, x_num, logger) scorer.reset() if args.model == 'DeeplabRes': model = Res_Deeplab(num_classes=args.num_classes) # elif args.model == 'DeeplabVGG': # model = DeeplabVGG(num_classes=args.num_classes) # if args.restore_from == RESTORE_FROM: # args.restore_from = RESTORE_FROM_VGG if args.restore_from[:4] == 'http': saved_state_dict = model_zoo.load_url(args.restore_from) new_params = model.state_dict().copy() for i in saved_state_dict: # Scale.layer5.conv2d_list.3.weight i_parts = str(i).split('.') # print i_parts if not i_parts[0] == 'fc': new_params['.'.join(i_parts[0:])] = saved_state_dict[i] else: loc = "cuda:" + str(args.gpu) saved_state_dict = torch.load(args.restore_from, map_location=loc) new_params = saved_state_dict.copy() model.load_state_dict(new_params) #model.train() model.eval() model.to(device) testloader = data.DataLoader(GTA5TestDataSet(args.data_dir, args.data_list, test_scale=1.0, test_size=(1024, 512), mean=IMG_MEAN, std=IMG_STD, scale=False, mirror=False), batch_size=1, shuffle=False, pin_memory=True) test_scales = [float(_) for _ in str(args.test_scale).split(',')] h, w = map(int, args.test_image_size.split(',')) if version.parse(torch.__version__) >= version.parse('0.4.0'): interp = nn.Upsample(size=(h, w), mode='bilinear', align_corners=True) else: interp = nn.Upsample(size=(h, w), mode='bilinear') test_image_size = (h, w) mean_rgb = IMG_MEAN[::-1].copy() std_rgb = IMG_STD[::-1].copy() with torch.no_grad(): for index, batch in enumerate(testloader): image, label, _, name = batch img = image.clone() num_scales = len(test_scales) # output_dict = {k: [] for k in range(num_scales)} for scale_idx in range(num_scales): if version.parse(torch.__version__) > version.parse('0.4.0'): image = F.interpolate(image, scale_factor=test_scales[scale_idx], mode='bilinear', align_corners=True) else: test_size = (int(h * test_scales[scale_idx]), int(w * test_scales[scale_idx])) interp_tmp = nn.Upsample(size=test_size, mode='bilinear', align_corners=True) image = interp_tmp(img) if args.model == 'DeeplabRes': output2 = model(image.to(device)) coutput = interp(output2).cpu().data[0].numpy() if args.test_flipping: output2 = model( torch.from_numpy( image.numpy()[:, :, :, ::-1].copy()).to(device)) coutput = 0.5 * ( coutput + interp(output2).cpu().data[0].numpy()[:, :, ::-1]) if scale_idx == 0: output = coutput.copy() else: output += coutput output = output / num_scales output = output.transpose(1, 2, 0) output = np.asarray(np.argmax(output, axis=2), dtype=np.uint8) pred_label = output.copy() label = label_2_id[np.asarray(label.numpy(), dtype=np.uint8)] scorer.update(pred_label.flatten(), label.flatten(), index) output_col = colorize_mask(output) output = Image.fromarray(output) name = name[0].split('/')[-1] output.save('%s/%s' % (args.save, name)) output_col.save('%s/%s_color.png' % (args.save, name.split('.')[0]))
def main(): """Create the model and start the training.""" h, w = map(int, args.input_size.split(',')) input_size = (h, w) print(input_size) cudnn.enabled = True gpu = args.gpu # Create network. model = Res_Deeplab(num_classes=args.num_classes) # For a small batch size, it is better to keep # the statistics of the BN layers (running means and variances) # frozen, and to not update the values provided by the pre-trained model. # If is_training=True, the statistics will be updated during the training. # Note that is_training=False still updates BN parameters gamma (scale) and beta (offset) # if they are presented in var_list of the optimiser definition. ''' # saved_state_dict = torch.load(args.restore_from) # new_params = model.state_dict().copy() # for i in saved_state_dict: #Scale.layer5.conv2d_list.3.weight # i_parts = i.split('.') # print i_parts # if not args.num_classes == 21 or not i_parts[1]=='layer5': # new_params['.'.join(i_parts[1:])] = saved_state_dict[i] # model.load_state_dict(new_params) ''' #model.float() #model.eval() # use_global_stats = True # model = nn.DataParallel(model) model.train() model.cuda() # model.cuda(args.gpu) cudnn.benchmark = True if not os.path.exists(args.snapshot_dir): os.makedirs(args.snapshot_dir) # trainloader = data.DataLoader(VOCDataSet(args.data_dir, args.data_list, max_iters=args.num_steps*args.batch_size, crop_size=input_size, # scale=args.random_scale, mirror=args.random_mirror, mean=IMG_MEAN), # batch_size=args.batch_size, shuffle=True, num_workers=5, pin_memory=True) dataset = GenericDataset(DATA_DIRECTORY, 'train', train_transform, mask_transform) trainloader = data.DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=4, pin_memory=True) # optimizer = optim.SGD([{'params': get_1x_lr_params_NOscale(model), 'lr': args.learning_rate }, # {'params': get_10x_lr_params(model), 'lr': 10*args.learning_rate}], # lr=args.learning_rate, momentum=args.momentum,weight_decay=args.weight_decay) optimizer = optim.Adam( filter(lambda p: p.requires_grad, model.parameters()), 1e-4) # optimizer = optim.Adam([{'params': get_1x_lr_params_NOscale(model), 'lr': args.learning_rate }], 1e-4) # optimizer = optim.Adam(get_1x_lr_params_NOscale(model), 1e-4) # optimizer = optim.Adam(get_10x_lr_params(model), lr=1e-5) optimizer.zero_grad() interp = nn.Upsample(size=input_size, mode='bilinear') for e in range(epochs): for i_iter, batch in enumerate(trainloader): images, labels, _, _ = batch # images = Variable(images).cuda(args.gpu) images = Variable(images).cuda() optimizer.zero_grad() adjust_learning_rate(optimizer, i_iter) pred = interp(model(images)) if i_iter % 50 == 0: vis.show( F.sigmoid(pred)[:, 1].cpu().data.round().numpy()[0:], labels.numpy()) loss = loss_calc(pred, labels.squeeze()) # loss = loss_calc(pred, labels.squeeze(), args.gpu) loss.backward() optimizer.step() print('iter = ', i_iter, 'of', args.num_steps, 'completed, loss = ', loss.data.cpu().numpy()) # if i_iter >= args.num_steps-1: # print('save model ...') # torch.save(model.state_dict(),osp.join(args.snapshot_dir, 'VOC12_scenes_'+str(args.num_steps)+'.pth')) # break if i_iter % 200 == 0 and i_iter != 0: print('taking snapshot ...') torch.save( model.state_dict(), osp.join(args.snapshot_dir, 'VOC12_scenes_' + str(i_iter) + '.pth')) end = timeit.default_timer() print(end - start, 'seconds')