def make_batch(self, components):
        data_item = DataItem.from_dict(components[0])
        mirror = components[2]
        part_score_targets = components[3]
        part_score_weights = components[4]
        locref_targets = components[5]
        locref_mask = components[6]

        im_file = data_item.im_path
        # logging.debug('image %s', im_file)
        # print('image: {}'.format(im_file))
        # logging.debug('mirror %r', mirror)

        img = data_item.image  # augmented image

        batch = {Batch.inputs: img}

        if self.has_gt:
            batch.update({
                Batch.part_score_targets: part_score_targets,
                Batch.part_score_weights: part_score_weights,
                Batch.locref_targets: locref_targets,
                Batch.locref_mask: locref_mask
            })

        batch = {key: data_to_input(data) for (key, data) in batch.items()}

        batch[Batch.data_item] = data_item

        return batch
Example #2
0
def predict_single_image(image, sess, inputs, outputs, dlc_cfg):
    """
    Returns pose for one single image
    :param image:
    :return:
    """
    # assert
    image = skimage.color.gray2rgb(image)
    image_batch = data_to_input(image)

    # Compute prediction with the CNN
    outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})
    scmap, locref = ptf_predict.extract_cnn_output(outputs_np, dlc_cfg)

    # Extract maximum scoring location from the heatmap, assume 1 person
    pose = ptf_predict.argmax_pose_predict(scmap, locref, dlc_cfg.stride)

    return pose
Example #3
0
    def validate(self, sess, trainingsiterations):
        final_result = []
        # TODO:: Adapt to training/validation loss value
        for imageindex, imagename in tqdm(enumerate(self.Data.index)):
            image = io.imread(os.path.join(self.cfg['project_path'],
                                           imagename),
                              mode='RGB')
            image = skimage.color.gray2rgb(image)
            image_batch = data_to_input(image)

            # Compute prediction with the CNN
            #[loss_val, summary] = sess.run([total_loss, merged_summaries],
            #                               feed_dict={inputs: image_batch})
            outputs_np = sess.run(self.outputs,
                                  feed_dict={self.inputs: image_batch})
            scmap, locref = ptf_predict.extract_cnn_output(
                outputs_np, self.pose_cfg)

            # Extract maximum scoring location from the heatmap, assume 1 person
            pose = ptf_predict.argmax_pose_predict(scmap, locref,
                                                   self.pose_cfg.stride)
            self.PredictedData[imageindex, :] = pose.flatten(
            )  # NOTE: thereby     cfg_test['all_joints_names'] should be same order as bodyparts!
        DLCscorer = 'Predictor'
        index = pd.MultiIndex.from_product(
            [[DLCscorer], self.pose_cfg['all_joints_names'],
             ['x', 'y', 'likelihood']],
            names=['scorer', 'bodyparts', 'coords'])

        # Saving results
        DataMachine = pd.DataFrame(self.PredictedData,
                                   columns=index,
                                   index=self.Data.index.values)
        #DataMachine.to_hdf(resultsfilename,'df_with_missing',format='table',mode='w')

        print("Validated validation set")
        DataCombined = pd.concat([self.Data.T, DataMachine.T], axis=0).T
        RMSE, RMSEpcutoff = evaluate.pairwisedistances(
            DataCombined, self.cfg["scorer"], DLCscorer, self.cfg["pcutoff"],
            self.comparisonbodyparts)
        validerror = np.nanmean(RMSE.iloc[self.validIndices].values.flatten())
        trainerror = np.nanmean(RMSE.iloc[self.trainIndices].values.flatten())
        validerrorpcutoff = np.nanmean(
            RMSEpcutoff.iloc[self.validIndices].values.flatten())
        trainerrorpcutoff = np.nanmean(
            RMSEpcutoff.iloc[self.trainIndices].values.flatten())
        results = [
            trainingsiterations,
            np.round(trainerror, 2),
            np.round(validerror, 2), self.cfg["pcutoff"],
            np.round(trainerrorpcutoff, 2),
            np.round(validerrorpcutoff, 2)
        ]
        final_result.append(results)

        print("Results for",
              trainingsiterations, " training iterations:", "train error:",
              np.round(trainerror, 2), "pixels. Validation error:",
              np.round(validerror, 2), " pixels.")
        print("With pcutoff of", self.cfg["pcutoff"], " train error:",
              np.round(trainerrorpcutoff, 2), "pixels. Validation error:",
              np.round(validerrorpcutoff, 2), "pixels")
        print(
            "Thereby, the errors are given by the average distances between the labels by DLC and the scorer."
        )

        # Write to file
        self.lrf.write("{}, {:.5f}, {:.5f}, {:.5f}, {:.5f}\n".format(
            trainingsiterations, trainerror, trainerrorpcutoff, validerror,
            validerrorpcutoff))
        self.lrf.flush()

        return validerror
Example #4
0
def evaluate_network(
    config,
    Shuffles=[1],
    trainingsetindex=0,
    plotting=None,
    show_errors=True,
    comparisonbodyparts="all",
    gputouse=None,
    rescale=False,
    modelprefix="",
    c_engine=False,
):
    """

    Evaluates the network based on the saved models at different stages of the training network.\n
    The evaluation results are stored in the .h5 and .csv file under the subdirectory 'evaluation_results'.
    Change the snapshotindex parameter in the config file to 'all' in order to evaluate all the saved models.
    Parameters
    ----------
    config : string
        Full path of the config.yaml file as a string.

    Shuffles: list, optional
        List of integers specifying the shuffle indices of the training dataset. The default is [1]

    trainingsetindex: int, optional
        Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml). This
        variable can also be set to "all".

    plotting: bool, optional
        Plots the predictions on the train and test images. The default is ``False``; if provided it must be either ``True`` or ``False``

    show_errors: bool, optional
        Display train and test errors. The default is `True``

    comparisonbodyparts: list of bodyparts, Default is "all".
        The average error will be computed for those body parts only (Has to be a subset of the body parts).

    gputouse: int, optional. Natural number indicating the number of your GPU (see number in nvidia-smi). If you do not have a GPU put None.
        See: https://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries

    rescale: bool, default False
        Evaluate the model at the 'global_scale' variable (as set in the test/pose_config.yaml file for a particular project). I.e. every
        image will be resized according to that scale and prediction will be compared to the resized ground truth. The error will be reported
        in pixels at rescaled to the *original* size. I.e. For a [200,200] pixel image evaluated at global_scale=.5, the predictions are calculated
        on [100,100] pixel images, compared to 1/2*ground truth and this error is then multiplied by 2!. The evaluation images are also shown for the
        original size!

    Examples
    --------
    If you do not want to plot
    >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml', Shuffles=[1])
    --------
    If you want to plot
    >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml',Shuffles=[1],True)

    """
    import os

    start_path = os.getcwd()
    from deeplabcut.utils import auxiliaryfunctions

    cfg = auxiliaryfunctions.read_config(config)

    if cfg.get("multianimalproject", False):
        from deeplabcut.pose_estimation_tensorflow.evaluate_multianimal import (
            evaluate_multianimal_full, )

        # TODO: Make this code not so redundant!
        evaluate_multianimal_full(
            config,
            Shuffles,
            trainingsetindex,
            plotting,
            show_errors,
            comparisonbodyparts,
            gputouse,
            modelprefix,
            c_engine=c_engine,
        )
    else:
        from deeplabcut.utils.auxfun_videos import imread, imresize
        from deeplabcut.pose_estimation_tensorflow.nnet import predict
        from deeplabcut.pose_estimation_tensorflow.config import load_config
        from deeplabcut.pose_estimation_tensorflow.dataset.pose_dataset import (
            data_to_input, )
        from deeplabcut.utils import auxiliaryfunctions
        import tensorflow as tf

        if "TF_CUDNN_USE_AUTOTUNE" in os.environ:
            del os.environ[
                "TF_CUDNN_USE_AUTOTUNE"]  # was potentially set during training

        tf.reset_default_graph()
        os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"  #
        #    tf.logging.set_verbosity(tf.logging.WARN)

        start_path = os.getcwd()
        # Read file path for pose_config file. >> pass it on
        cfg = auxiliaryfunctions.read_config(config)
        if gputouse is not None:  # gpu selectinon
            os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse)

        if trainingsetindex == "all":
            TrainingFractions = cfg["TrainingFraction"]
        else:
            if (trainingsetindex < len(cfg["TrainingFraction"])
                    and trainingsetindex >= 0):
                TrainingFractions = [
                    cfg["TrainingFraction"][int(trainingsetindex)]
                ]
            else:
                raise Exception(
                    "Please check the trainingsetindex! ",
                    trainingsetindex,
                    " should be an integer from 0 .. ",
                    int(len(cfg["TrainingFraction"]) - 1),
                )

        # Loading human annotatated data
        trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
        Data = pd.read_hdf(
            os.path.join(
                cfg["project_path"],
                str(trainingsetfolder),
                "CollectedData_" + cfg["scorer"] + ".h5",
            ),
            "df_with_missing",
        )

        # Get list of body parts to evaluate network for
        comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(
            cfg, comparisonbodyparts)
        # Make folder for evaluation
        auxiliaryfunctions.attempttomakefolder(
            str(cfg["project_path"] + "/evaluation-results/"))
        for shuffle in Shuffles:
            for trainFraction in TrainingFractions:
                ##################################################
                # Load and setup CNN part detector
                ##################################################
                datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
                    trainingsetfolder, trainFraction, shuffle, cfg)
                modelfolder = os.path.join(
                    cfg["project_path"],
                    str(
                        auxiliaryfunctions.GetModelFolder(
                            trainFraction,
                            shuffle,
                            cfg,
                            modelprefix=modelprefix)),
                )

                path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml"
                # Load meta data
                (
                    data,
                    trainIndices,
                    testIndices,
                    trainFraction,
                ) = auxiliaryfunctions.LoadMetadata(
                    os.path.join(cfg["project_path"], metadatafn))

                try:
                    dlc_cfg = load_config(str(path_test_config))
                except FileNotFoundError:
                    raise FileNotFoundError(
                        "It seems the model for shuffle %s and trainFraction %s does not exist."
                        % (shuffle, trainFraction))

                # change batch size, if it was edited during analysis!
                dlc_cfg[
                    "batch_size"] = 1  # in case this was edited for analysis.

                # Create folder structure to store results.
                evaluationfolder = os.path.join(
                    cfg["project_path"],
                    str(
                        auxiliaryfunctions.GetEvaluationFolder(
                            trainFraction,
                            shuffle,
                            cfg,
                            modelprefix=modelprefix)),
                )
                auxiliaryfunctions.attempttomakefolder(evaluationfolder,
                                                       recursive=True)
                # path_train_config = modelfolder / 'train' / 'pose_cfg.yaml'

                # Check which snapshots are available and sort them by # iterations
                Snapshots = np.array([
                    fn.split(".")[0] for fn in os.listdir(
                        os.path.join(str(modelfolder), "train"))
                    if "index" in fn
                ])
                try:  # check if any where found?
                    Snapshots[0]
                except IndexError:
                    raise FileNotFoundError(
                        "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."
                        % (shuffle, trainFraction))

                increasing_indices = np.argsort(
                    [int(m.split("-")[1]) for m in Snapshots])
                Snapshots = Snapshots[increasing_indices]

                if cfg["snapshotindex"] == -1:
                    snapindices = [-1]
                elif cfg["snapshotindex"] == "all":
                    snapindices = range(len(Snapshots))
                elif cfg["snapshotindex"] < len(Snapshots):
                    snapindices = [cfg["snapshotindex"]]
                else:
                    raise ValueError(
                        "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
                    )

                final_result = []

                ########################### RESCALING (to global scale)
                if rescale == True:
                    scale = dlc_cfg["global_scale"]
                    Data = (pd.read_hdf(
                        os.path.join(
                            cfg["project_path"],
                            str(trainingsetfolder),
                            "CollectedData_" + cfg["scorer"] + ".h5",
                        ),
                        "df_with_missing",
                    ) * scale)
                else:
                    scale = 1

                ##################################################
                # Compute predictions over images
                ##################################################
                for snapindex in snapindices:
                    dlc_cfg["init_weights"] = os.path.join(
                        str(modelfolder), "train", Snapshots[snapindex]
                    )  # setting weights to corresponding snapshot.
                    trainingsiterations = (
                        dlc_cfg["init_weights"].split(os.sep)[-1]
                    ).split(
                        "-"
                    )[-1]  # read how many training siterations that corresponds to.

                    # Name for deeplabcut net (based on its parameters)
                    DLCscorer, DLCscorerlegacy = auxiliaryfunctions.GetScorerName(
                        cfg,
                        shuffle,
                        trainFraction,
                        trainingsiterations,
                        modelprefix=modelprefix,
                    )
                    print(
                        "Running ",
                        DLCscorer,
                        " with # of trainingiterations:",
                        trainingsiterations,
                    )
                    (
                        notanalyzed,
                        resultsfilename,
                        DLCscorer,
                    ) = auxiliaryfunctions.CheckifNotEvaluated(
                        str(evaluationfolder),
                        DLCscorer,
                        DLCscorerlegacy,
                        Snapshots[snapindex],
                    )
                    if notanalyzed:
                        # Specifying state of model (snapshot / training state)
                        sess, inputs, outputs = predict.setup_pose_prediction(
                            dlc_cfg)
                        Numimages = len(Data.index)
                        PredicteData = np.zeros(
                            (Numimages, 3 * len(dlc_cfg["all_joints_names"])))
                        print("Analyzing data...")
                        for imageindex, imagename in tqdm(enumerate(
                                Data.index)):
                            image = imread(os.path.join(
                                cfg["project_path"], imagename),
                                           mode="RGB")
                            if scale != 1:
                                image = imresize(image, scale)

                            image_batch = data_to_input(image)
                            # Compute prediction with the CNN
                            outputs_np = sess.run(
                                outputs, feed_dict={inputs: image_batch})
                            scmap, locref = predict.extract_cnn_output(
                                outputs_np, dlc_cfg)

                            # Extract maximum scoring location from the heatmap, assume 1 person
                            pose = predict.argmax_pose_predict(
                                scmap, locref, dlc_cfg.stride)
                            PredicteData[imageindex, :] = (
                                pose.flatten()
                            )  # NOTE: thereby     cfg_test['all_joints_names'] should be same order as bodyparts!

                        sess.close()  # closes the current tf session

                        index = pd.MultiIndex.from_product(
                            [
                                [DLCscorer],
                                dlc_cfg["all_joints_names"],
                                ["x", "y", "likelihood"],
                            ],
                            names=["scorer", "bodyparts", "coords"],
                        )

                        # Saving results
                        DataMachine = pd.DataFrame(PredicteData,
                                                   columns=index,
                                                   index=Data.index.values)
                        DataMachine.to_hdf(resultsfilename,
                                           "df_with_missing",
                                           format="table",
                                           mode="w")

                        print(
                            "Done and results stored for snapshot: ",
                            Snapshots[snapindex],
                        )
                        DataCombined = pd.concat([Data.T, DataMachine.T],
                                                 axis=0,
                                                 sort=False).T

                        RMSE, RMSEpcutoff = pairwisedistances(
                            DataCombined,
                            cfg["scorer"],
                            DLCscorer,
                            cfg["pcutoff"],
                            comparisonbodyparts,
                        )
                        testerror = np.nanmean(
                            RMSE.iloc[testIndices].values.flatten())
                        trainerror = np.nanmean(
                            RMSE.iloc[trainIndices].values.flatten())
                        testerrorpcutoff = np.nanmean(
                            RMSEpcutoff.iloc[testIndices].values.flatten())
                        trainerrorpcutoff = np.nanmean(
                            RMSEpcutoff.iloc[trainIndices].values.flatten())
                        results = [
                            trainingsiterations,
                            int(100 * trainFraction),
                            shuffle,
                            np.round(trainerror, 2),
                            np.round(testerror, 2),
                            cfg["pcutoff"],
                            np.round(trainerrorpcutoff, 2),
                            np.round(testerrorpcutoff, 2),
                        ]
                        final_result.append(results)

                        if show_errors == True:
                            print(
                                "Results for",
                                trainingsiterations,
                                " training iterations:",
                                int(100 * trainFraction),
                                shuffle,
                                "train error:",
                                np.round(trainerror, 2),
                                "pixels. Test error:",
                                np.round(testerror, 2),
                                " pixels.",
                            )
                            print(
                                "With pcutoff of",
                                cfg["pcutoff"],
                                " train error:",
                                np.round(trainerrorpcutoff, 2),
                                "pixels. Test error:",
                                np.round(testerrorpcutoff, 2),
                                "pixels",
                            )
                            if scale != 1:
                                print(
                                    "The predictions have been calculated for rescaled images (and rescaled ground truth). Scale:",
                                    scale,
                                )
                            print(
                                "Thereby, the errors are given by the average distances between the labels by DLC and the scorer."
                            )

                        if plotting == True:
                            print("Plotting...")
                            foldername = os.path.join(
                                str(evaluationfolder),
                                "LabeledImages_" + DLCscorer + "_" +
                                Snapshots[snapindex],
                            )
                            auxiliaryfunctions.attempttomakefolder(foldername)
                            Plotting(
                                cfg,
                                comparisonbodyparts,
                                DLCscorer,
                                trainIndices,
                                DataCombined * 1.0 / scale,
                                foldername,
                            )  # Rescaling coordinates to have figure in original size!

                        tf.reset_default_graph()
                        # print(final_result)
                    else:
                        DataMachine = pd.read_hdf(resultsfilename,
                                                  "df_with_missing")
                        if plotting == True:
                            DataCombined = pd.concat([Data.T, DataMachine.T],
                                                     axis=0,
                                                     sort=False).T
                            print(
                                "Plotting...(attention scale might be inconsistent in comparison to when data was analyzed; i.e. if you used rescale)"
                            )
                            foldername = os.path.join(
                                str(evaluationfolder),
                                "LabeledImages_" + DLCscorer + "_" +
                                Snapshots[snapindex],
                            )
                            auxiliaryfunctions.attempttomakefolder(foldername)
                            Plotting(
                                cfg,
                                comparisonbodyparts,
                                DLCscorer,
                                trainIndices,
                                DataCombined * 1.0 / scale,
                                foldername,
                            )

                if len(final_result
                       ) > 0:  # Only append if results were calculated
                    make_results_file(final_result, evaluationfolder,
                                      DLCscorer)
                    print(
                        "The network is evaluated and the results are stored in the subdirectory 'evaluation_results'."
                    )
                    print(
                        "If it generalizes well, choose the best model for prediction and update the config file with the appropriate index for the 'snapshotindex'.\nUse the function 'analyze_video' to make predictions on new videos."
                    )
                    print(
                        "Otherwise consider retraining the network (see DeepLabCut workflow Fig 2)"
                    )

    # returning to intial folder
    os.chdir(str(start_path))
Example #5
0
def extract_maps(
    config,
    shuffle=0,
    trainingsetindex=0,
    gputouse=None,
    rescale=False,
    Indices=None,
    modelprefix="",
):
    """
    Extracts the scoremap, locref, partaffinityfields (if available).

    Returns a dictionary indexed by: trainingsetfraction, snapshotindex, and imageindex
    for those keys, each item contains: (image,scmap,locref,paf,bpt names,partaffinity graph, imagename, True/False if this image was in trainingset)
    ----------
    config : string
        Full path of the config.yaml file as a string.

    shuffle: integer
        integers specifying shuffle index of the training dataset. The default is 0.

    trainingsetindex: int, optional
        Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml). This
        variable can also be set to "all".

    rescale: bool, default False
        Evaluate the model at the 'global_scale' variable (as set in the test/pose_config.yaml file for a particular project). I.e. every
        image will be resized according to that scale and prediction will be compared to the resized ground truth. The error will be reported
        in pixels at rescaled to the *original* size. I.e. For a [200,200] pixel image evaluated at global_scale=.5, the predictions are calculated
        on [100,100] pixel images, compared to 1/2*ground truth and this error is then multiplied by 2!. The evaluation images are also shown for the
        original size!

    Examples
    --------
    If you want to extract the data for image 0 and 103 (of the training set) for model trained with shuffle 0.
    >>> deeplabcut.extract_maps(configfile,0,Indices=[0,103])

    """
    from deeplabcut.utils.auxfun_videos import imread, imresize
    from deeplabcut.pose_estimation_tensorflow.nnet import predict
    from deeplabcut.pose_estimation_tensorflow.nnet import (
        predict_multianimal as predictma, )
    from deeplabcut.pose_estimation_tensorflow.config import load_config
    from deeplabcut.pose_estimation_tensorflow.dataset.pose_dataset import data_to_input
    from deeplabcut.utils import auxiliaryfunctions
    from tqdm import tqdm
    import tensorflow as tf

    vers = (tf.__version__).split(".")
    if int(vers[0]) == 1 and int(vers[1]) > 12:
        TF = tf.compat.v1
    else:
        TF = tf

    import pandas as pd
    from pathlib import Path
    import numpy as np

    TF.reset_default_graph()
    os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"  #
    #    tf.logging.set_verbosity(tf.logging.WARN)

    start_path = os.getcwd()
    # Read file path for pose_config file. >> pass it on
    cfg = auxiliaryfunctions.read_config(config)

    if gputouse is not None:  # gpu selectinon
        os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse)

    if trainingsetindex == "all":
        TrainingFractions = cfg["TrainingFraction"]
    else:
        if trainingsetindex < len(
                cfg["TrainingFraction"]) and trainingsetindex >= 0:
            TrainingFractions = [
                cfg["TrainingFraction"][int(trainingsetindex)]
            ]
        else:
            raise Exception(
                "Please check the trainingsetindex! ",
                trainingsetindex,
                " should be an integer from 0 .. ",
                int(len(cfg["TrainingFraction"]) - 1),
            )

    # Loading human annotatated data
    trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
    Data = pd.read_hdf(
        os.path.join(
            cfg["project_path"],
            str(trainingsetfolder),
            "CollectedData_" + cfg["scorer"] + ".h5",
        ),
        "df_with_missing",
    )

    # Make folder for evaluation
    auxiliaryfunctions.attempttomakefolder(
        str(cfg["project_path"] + "/evaluation-results/"))

    Maps = {}
    for trainFraction in TrainingFractions:
        Maps[trainFraction] = {}
        ##################################################
        # Load and setup CNN part detector
        ##################################################
        datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
            trainingsetfolder, trainFraction, shuffle, cfg)

        modelfolder = os.path.join(
            cfg["project_path"],
            str(
                auxiliaryfunctions.GetModelFolder(trainFraction,
                                                  shuffle,
                                                  cfg,
                                                  modelprefix=modelprefix)),
        )
        path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml"
        # Load meta data
        (
            data,
            trainIndices,
            testIndices,
            trainFraction,
        ) = auxiliaryfunctions.LoadMetadata(
            os.path.join(cfg["project_path"], metadatafn))
        try:
            dlc_cfg = load_config(str(path_test_config))
        except FileNotFoundError:
            raise FileNotFoundError(
                "It seems the model for shuffle %s and trainFraction %s does not exist."
                % (shuffle, trainFraction))

        # change batch size, if it was edited during analysis!
        dlc_cfg["batch_size"] = 1  # in case this was edited for analysis.

        # Create folder structure to store results.
        evaluationfolder = os.path.join(
            cfg["project_path"],
            str(
                auxiliaryfunctions.GetEvaluationFolder(
                    trainFraction, shuffle, cfg, modelprefix=modelprefix)),
        )
        auxiliaryfunctions.attempttomakefolder(evaluationfolder,
                                               recursive=True)
        # path_train_config = modelfolder / 'train' / 'pose_cfg.yaml'

        # Check which snapshots are available and sort them by # iterations
        Snapshots = np.array([
            fn.split(".")[0]
            for fn in os.listdir(os.path.join(str(modelfolder), "train"))
            if "index" in fn
        ])
        try:  # check if any where found?
            Snapshots[0]
        except IndexError:
            raise FileNotFoundError(
                "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."
                % (shuffle, trainFraction))

        increasing_indices = np.argsort(
            [int(m.split("-")[1]) for m in Snapshots])
        Snapshots = Snapshots[increasing_indices]

        if cfg["snapshotindex"] == -1:
            snapindices = [-1]
        elif cfg["snapshotindex"] == "all":
            snapindices = range(len(Snapshots))
        elif cfg["snapshotindex"] < len(Snapshots):
            snapindices = [cfg["snapshotindex"]]
        else:
            print(
                "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
            )

        ########################### RESCALING (to global scale)
        scale = dlc_cfg["global_scale"] if rescale else 1
        Data *= scale

        bptnames = [
            dlc_cfg["all_joints_names"][i]
            for i in range(len(dlc_cfg["all_joints"]))
        ]

        for snapindex in snapindices:
            dlc_cfg["init_weights"] = os.path.join(
                str(modelfolder), "train", Snapshots[snapindex]
            )  # setting weights to corresponding snapshot.
            trainingsiterations = (
                dlc_cfg["init_weights"].split(os.sep)[-1]
            ).split("-")[
                -1]  # read how many training siterations that corresponds to.

            # Name for deeplabcut net (based on its parameters)
            # DLCscorer,DLCscorerlegacy = auxiliaryfunctions.GetScorerName(cfg,shuffle,trainFraction,trainingsiterations)
            # notanalyzed, resultsfilename, DLCscorer=auxiliaryfunctions.CheckifNotEvaluated(str(evaluationfolder),DLCscorer,DLCscorerlegacy,Snapshots[snapindex])
            # print("Extracting maps for ", DLCscorer, " with # of trainingiterations:", trainingsiterations)
            # if notanalyzed: #this only applies to ask if h5 exists...

            # Specifying state of model (snapshot / training state)
            sess, inputs, outputs = predict.setup_pose_prediction(dlc_cfg)
            Numimages = len(Data.index)
            PredicteData = np.zeros(
                (Numimages, 3 * len(dlc_cfg["all_joints_names"])))
            print("Analyzing data...")
            if Indices is None:
                Indices = enumerate(Data.index)
            else:
                Ind = [Data.index[j] for j in Indices]
                Indices = enumerate(Ind)

            DATA = {}
            for imageindex, imagename in tqdm(Indices):
                image = imread(os.path.join(cfg["project_path"], imagename),
                               mode="RGB")
                if scale != 1:
                    image = imresize(image, scale)

                image_batch = data_to_input(image)
                # Compute prediction with the CNN
                outputs_np = sess.run(outputs, feed_dict={inputs: image_batch})

                if cfg.get("multianimalproject", False):
                    scmap, locref, paf = predictma.extract_cnn_output(
                        outputs_np, dlc_cfg)
                    pagraph = dlc_cfg["partaffinityfield_graph"]
                else:
                    scmap, locref = predict.extract_cnn_output(
                        outputs_np, dlc_cfg)
                    paf = None
                    pagraph = []

                if imageindex in testIndices:
                    trainingfram = False
                else:
                    trainingfram = True

                DATA[imageindex] = [
                    image,
                    scmap,
                    locref,
                    paf,
                    bptnames,
                    pagraph,
                    imagename,
                    trainingfram,
                ]
            Maps[trainFraction][Snapshots[snapindex]] = DATA
    os.chdir(str(start_path))
    return Maps
Example #6
0
    def make_batch(self, data_item, scale, mirror):
        
        im_file = data_item.im_path
        logging.debug('image %s', im_file)
        logging.debug('mirror %r', mirror)
        
        #print(im_file, os.getcwd())
        #print(self.cfg.project_path)
        image = imread(os.path.join(self.cfg.project_path,im_file), mode='RGB')

        if self.has_gt:
            joints = np.copy(data_item.joints)

        if self.cfg.crop: #adapted cropping for DLC
            if np.random.rand()<self.cfg.cropratio:
                #1. get center of joints
                j=np.random.randint(np.shape(joints)[1]) #pick a random joint
                # draw random crop dimensions & subtract joint points
                #print(joints,j,'ahah')
                joints,image=CropImage(joints,image,joints[0,j,1],joints[0,j,2],self.cfg)
                
                #if self.has_gt:
                #    joints[0,:, 1] -= x0
                #    joints[0,:, 2] -= y0
                '''
                print(joints)
                import matplotlib.pyplot as plt
                plt.clf()
                plt.imshow(image)
                plt.plot(joints[0,:,1],joints[0,:,2],'.')
                plt.savefig("abc"+str(np.random.randint(int(1e6)))+".png")
                '''
            else:
                pass #no cropping!
                
        img = imresize(image, scale) if scale != 1 else image
        scaled_img_size = arr(img.shape[0:2])

        if mirror:
            img = np.fliplr(img)

        batch = {Batch.inputs: img}

        if self.has_gt:
            stride = self.cfg.stride

            if mirror:
                joints = [self.mirror_joints(person_joints, self.symmetric_joints, image.shape[1]) for person_joints in
                          joints]

            sm_size = np.ceil(scaled_img_size / (stride * 2)).astype(int) * 2

            scaled_joints = [person_joints[:, 1:3] * scale for person_joints in joints]

            joint_id = [person_joints[:, 0].astype(int) for person_joints in joints]
            part_score_targets, part_score_weights, locref_targets, locref_mask = self.compute_target_part_scoremap(
                joint_id, scaled_joints, data_item, sm_size, scale)

            batch.update({
                Batch.part_score_targets: part_score_targets,
                Batch.part_score_weights: part_score_weights,
                Batch.locref_targets: locref_targets,
                Batch.locref_mask: locref_mask
            })

        batch = {key: data_to_input(data) for (key, data) in batch.items()}

        batch[Batch.data_item] = data_item

        return batch
Example #7
0
def evaluate_network(config,
                     Shuffles=[1],
                     plotting=None,
                     show_errors=True,
                     comparisonbodyparts="all",
                     gputouse=None):
    """
    Evaluates the network based on the saved models at different stages of the training network.\n
    The evaluation results are stored in the .h5 and .csv file under the subdirectory 'evaluation_results'.
    Change the snapshotindex parameter in the config file to 'all' in order to evaluate all the saved models.

    Parameters
    ----------
    config : string
        Full path of the config.yaml file as a string.

    Shuffles: list, optional
        List of integers specifying the shuffle indices of the training dataset. The default is [1]

    plotting: bool, optional
        Plots the predictions on the train and test images. The default is ``False``; if provided it must be either ``True`` or ``False``

    show_errors: bool, optional
        Display train and test errors. The default is `True``

    comparisonbodyparts: list of bodyparts, Default is "all".
        The average error will be computed for those body parts only (Has to be a subset of the body parts).

    gputouse: int, optional. Natural number indicating the number of your GPU (see number in nvidia-smi). If you do not have a GPU put None.
    See: https://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries

    Examples
    --------
    If you do not want to plot
    >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml', shuffle=[1])
    --------

    If you want to plot
    >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml',shuffle=[1],True)
    """
    import os
    from skimage import io
    import skimage.color

    from deeplabcut.pose_estimation_tensorflow.nnet import predict as ptf_predict
    from deeplabcut.pose_estimation_tensorflow.config import load_config
    from deeplabcut.pose_estimation_tensorflow.dataset.pose_dataset import data_to_input
    from deeplabcut.utils import auxiliaryfunctions, visualization
    import tensorflow as tf

    if 'TF_CUDNN_USE_AUTOTUNE' in os.environ:
        del os.environ[
            'TF_CUDNN_USE_AUTOTUNE']  #was potentially set during training

    vers = (tf.__version__).split('.')
    if int(vers[0]) == 1 and int(vers[1]) > 12:
        TF = tf.compat.v1
    else:
        TF = tf

    TF.reset_default_graph()

    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'  #
    #    tf.logging.set_verbosity(tf.logging.WARN)

    start_path = os.getcwd()
    # Read file path for pose_config file. >> pass it on
    cfg = auxiliaryfunctions.read_config(config)
    if gputouse is not None:  #gpu selectinon
        os.environ['CUDA_VISIBLE_DEVICES'] = str(gputouse)

    # Loading human annotatated data
    trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg)
    Data = pd.read_hdf(
        os.path.join(cfg["project_path"], str(trainingsetfolder),
                     'CollectedData_' + cfg["scorer"] + '.h5'),
        'df_with_missing')
    # Get list of body parts to evaluate network for
    comparisonbodyparts = auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser(
        cfg, comparisonbodyparts)
    # Make folder for evaluation
    auxiliaryfunctions.attempttomakefolder(
        str(cfg["project_path"] + "/evaluation-results/"))
    for shuffle in Shuffles:
        for trainFraction in cfg["TrainingFraction"]:
            ##################################################
            # Load and setup CNN part detector
            ##################################################
            datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames(
                trainingsetfolder, trainFraction, shuffle, cfg)
            modelfolder = os.path.join(
                cfg["project_path"],
                str(
                    auxiliaryfunctions.GetModelFolder(trainFraction, shuffle,
                                                      cfg)))
            path_test_config = Path(modelfolder) / 'test' / 'pose_cfg.yaml'
            # Load meta data
            data, trainIndices, testIndices, trainFraction = auxiliaryfunctions.LoadMetadata(
                os.path.join(cfg["project_path"], metadatafn))

            try:
                dlc_cfg = load_config(str(path_test_config))
            except FileNotFoundError:
                raise FileNotFoundError(
                    "It seems the model for shuffle %s and trainFraction %s does not exist."
                    % (shuffle, trainFraction))

            #change batch size, if it was edited during analysis!
            dlc_cfg['batch_size'] = 1  #in case this was edited for analysis.
            #Create folder structure to store results.
            evaluationfolder = os.path.join(
                cfg["project_path"],
                str(
                    auxiliaryfunctions.GetEvaluationFolder(
                        trainFraction, shuffle, cfg)))
            auxiliaryfunctions.attempttomakefolder(evaluationfolder,
                                                   recursive=True)
            #path_train_config = modelfolder / 'train' / 'pose_cfg.yaml'

            # Check which snapshots are available and sort them by # iterations
            Snapshots = np.array([
                fn.split('.')[0]
                for fn in os.listdir(os.path.join(str(modelfolder), 'train'))
                if "index" in fn
            ])
            try:  #check if any where found?
                Snapshots[0]
            except IndexError:
                raise FileNotFoundError(
                    "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so."
                    % (shuffle, trainFraction))

            increasing_indices = np.argsort(
                [int(m.split('-')[1]) for m in Snapshots])
            Snapshots = Snapshots[increasing_indices]

            if cfg["snapshotindex"] == -1:
                snapindices = [-1]
            elif cfg["snapshotindex"] == "all":
                snapindices = range(len(Snapshots))
            elif cfg["snapshotindex"] < len(Snapshots):
                snapindices = [cfg["snapshotindex"]]
            else:
                print(
                    "Invalid choice, only -1 (last), any integer up to last, or all (as string)!"
                )

            final_result = []
            ##################################################
            # Compute predictions over images
            ##################################################
            for snapindex in snapindices:
                dlc_cfg['init_weights'] = os.path.join(
                    str(modelfolder), 'train', Snapshots[snapindex]
                )  #setting weights to corresponding snapshot.
                trainingsiterations = (
                    dlc_cfg['init_weights'].split(os.sep)[-1]
                ).split(
                    '-'
                )[-1]  #read how many training siterations that corresponds to.

                #name for deeplabcut net (based on its parameters)
                DLCscorer = auxiliaryfunctions.GetScorerName(
                    cfg, shuffle, trainFraction, trainingsiterations)
                print("Running ", DLCscorer, " with # of trainingiterations:",
                      trainingsiterations)
                resultsfilename = os.path.join(
                    str(evaluationfolder),
                    DLCscorer + '-' + Snapshots[snapindex] + '.h5')
                try:
                    DataMachine = pd.read_hdf(resultsfilename,
                                              'df_with_missing')
                    print("This net has already been evaluated!")
                except FileNotFoundError:
                    # Specifying state of model (snapshot / training state)
                    sess, inputs, outputs = ptf_predict.setup_pose_prediction(
                        dlc_cfg)

                    Numimages = len(Data.index)
                    PredicteData = np.zeros(
                        (Numimages, 3 * len(dlc_cfg['all_joints_names'])))
                    print("Analyzing data...")
                    for imageindex, imagename in tqdm(enumerate(Data.index)):
                        image = io.imread(os.path.join(cfg['project_path'],
                                                       imagename),
                                          mode='RGB')
                        image = skimage.color.gray2rgb(image)
                        image_batch = data_to_input(image)

                        # Compute prediction with the CNN
                        outputs_np = sess.run(outputs,
                                              feed_dict={inputs: image_batch})
                        scmap, locref = ptf_predict.extract_cnn_output(
                            outputs_np, dlc_cfg)

                        # Extract maximum scoring location from the heatmap, assume 1 person
                        pose = ptf_predict.argmax_pose_predict(
                            scmap, locref, dlc_cfg.stride)
                        PredicteData[imageindex, :] = pose.flatten(
                        )  # NOTE: thereby     cfg_test['all_joints_names'] should be same order as bodyparts!

                    sess.close()  #closes the current tf session

                    index = pd.MultiIndex.from_product(
                        [[DLCscorer], dlc_cfg['all_joints_names'],
                         ['x', 'y', 'likelihood']],
                        names=['scorer', 'bodyparts', 'coords'])

                    # Saving results
                    DataMachine = pd.DataFrame(PredicteData,
                                               columns=index,
                                               index=Data.index.values)
                    DataMachine.to_hdf(resultsfilename,
                                       'df_with_missing',
                                       format='table',
                                       mode='w')

                    print("Done and results stored for snapshot: ",
                          Snapshots[snapindex])
                    DataCombined = pd.concat([Data.T, DataMachine.T], axis=0).T
                    RMSE, RMSEpcutoff = pairwisedistances(
                        DataCombined, cfg["scorer"], DLCscorer, cfg["pcutoff"],
                        comparisonbodyparts)
                    testerror = np.nanmean(
                        RMSE.iloc[testIndices].values.flatten())
                    trainerror = np.nanmean(
                        RMSE.iloc[trainIndices].values.flatten())
                    testerrorpcutoff = np.nanmean(
                        RMSEpcutoff.iloc[testIndices].values.flatten())
                    trainerrorpcutoff = np.nanmean(
                        RMSEpcutoff.iloc[trainIndices].values.flatten())
                    results = [
                        trainingsiterations,
                        int(100 * trainFraction), shuffle,
                        np.round(trainerror, 2),
                        np.round(testerror, 2), cfg["pcutoff"],
                        np.round(trainerrorpcutoff, 2),
                        np.round(testerrorpcutoff, 2)
                    ]
                    final_result.append(results)

                    if show_errors == True:
                        print("Results for",
                              trainingsiterations, " training iterations:",
                              int(100 * trainFraction), shuffle,
                              "train error:",
                              np.round(trainerror, 2), "pixels. Test error:",
                              np.round(testerror, 2), " pixels.")
                        print("With pcutoff of",
                              cfg["pcutoff"], " train error:",
                              np.round(trainerrorpcutoff,
                                       2), "pixels. Test error:",
                              np.round(testerrorpcutoff, 2), "pixels")
                        print(
                            "Thereby, the errors are given by the average distances between the labels by DLC and the scorer."
                        )

                    if plotting == True:
                        print("Plotting...")
                        colors = visualization.get_cmap(
                            len(comparisonbodyparts), name=cfg['colormap'])

                        foldername = os.path.join(
                            str(evaluationfolder), 'LabeledImages_' +
                            DLCscorer + '_' + Snapshots[snapindex])
                        auxiliaryfunctions.attempttomakefolder(foldername)
                        NumFrames = np.size(DataCombined.index)
                        for ind in np.arange(NumFrames):
                            visualization.PlottingandSaveLabeledFrame(
                                DataCombined, ind, trainIndices, cfg, colors,
                                comparisonbodyparts, DLCscorer, foldername)

                    TF.reset_default_graph()
                    #print(final_result)
            make_results_file(final_result, evaluationfolder, DLCscorer)
            print(
                "The network is evaluated and the results are stored in the subdirectory 'evaluation_results'."
            )
            print(
                "If it generalizes well, choose the best model for prediction and update the config file with the appropriate index for the 'snapshotindex'.\nUse the function 'analyze_video' to make predictions on new videos."
            )
            print(
                "Otherwise consider retraining the network (see DeepLabCut workflow Fig 2)"
            )

    #returning to intial folder
    os.chdir(str(start_path))
    def make_batch(self, data_item, scale, mirror):
        im_file = data_item.im_path
        logging.debug("image %s", im_file)
        logging.debug("mirror %r", mirror)
        image = imread(os.path.join(self.cfg['project_path'], im_file), mode="RGB")

        if self.has_gt:
            joints = np.copy(data_item.joints)

        if self.cfg['crop']:  # adapted cropping for DLC
            if np.random.rand() < self.cfg['cropratio']:
                j = np.random.randint(np.shape(joints)[1])  # pick a random joint
                joints, image = CropImage(
                    joints, image, joints[0, j, 1], joints[0, j, 2], self.cfg
                )
                """
                print(joints)
                import matplotlib.pyplot as plt
                plt.clf()
                plt.imshow(image)
                plt.plot(joints[0,:,1],joints[0,:,2],'.')
                plt.savefig("abc"+str(np.random.randint(int(1e6)))+".png")
                """
            else:
                pass  # no cropping!

        img = imresize(image, scale) if scale != 1 else image
        scaled_img_size = arr(img.shape[0:2])
        if mirror:
            img = np.fliplr(img)

        batch = {Batch.inputs: img}

        if self.has_gt:
            stride = self.cfg['stride']

            if mirror:
                joints = [
                    self.mirror_joints(
                        person_joints, self.symmetric_joints, image.shape[1]
                    )
                    for person_joints in joints
                ]

            sm_size = np.ceil(scaled_img_size / (stride * 2)).astype(int) * 2

            scaled_joints = [person_joints[:, 1:3] * scale for person_joints in joints]

            joint_id = [person_joints[:, 0].astype(int) for person_joints in joints]
            (
                part_score_targets,
                part_score_weights,
                locref_targets,
                locref_mask,
            ) = self.compute_target_part_scoremap(
                joint_id, scaled_joints, data_item, sm_size, scale
            )

            batch.update(
                {
                    Batch.part_score_targets: part_score_targets,
                    Batch.part_score_weights: part_score_weights,
                    Batch.locref_targets: locref_targets,
                    Batch.locref_mask: locref_mask,
                }
            )

        batch = {key: data_to_input(data) for (key, data) in batch.items()}

        batch[Batch.data_item] = data_item

        return batch
    def make_batch(self, data_item, scale, mirror):
        im_file = data_item.im_path
        logging.debug("image %s", im_file)
        logging.debug("mirror %r", mirror)

        # print(im_file, os.getcwd())
        # print(self.cfg.project_path)
        vid_fname = os.path.join(self.cfg.project_path, im_file)
        image = imread(vid_fname, mode="RGB")
        # print("Full image filename: ", vid_fname)
        # print("Shape of read image: ", image.shape)

        if self.has_gt:
            joints = np.copy(data_item.joints)

        if self.cfg.crop:  # adapted cropping for DLC
            if np.random.rand() < self.cfg.cropratio:
                j = np.random.randint(np.shape(joints)[1])  # pick a random joint
                joints, image = CropImage(
                    joints, image, joints[0, j, 1], joints[0, j, 2], self.cfg
                )
                """
                print(joints)
                import matplotlib.pyplot as plt
                plt.clf()
                plt.imshow(image)
                plt.plot(joints[0,:,1],joints[0,:,2],'.')
                plt.savefig("abc"+str(np.random.randint(int(1e6)))+".png")
                """
            else:
                pass  # no cropping!

        # Charlie addition
        if not self.cfg['using_z_slices']:
            img = imresize(image, scale) if scale != 1 else image
            scaled_img_size = arr(img.shape[0:2])
        else:
            # img = imresize(image, scale) if scale < 1 else image
            # if scale != 1:
            #     zspan = range(image.shape[0])
            #     img = np.array([imresize(image[z,...], scale) for z in zspan])
            #     print(f"{img.shape}")
            # else:
            #     img = image
            img = image # Just ignore scale
            scaled_img_size = arr(img.shape[:3]) # Ignore color
        if mirror:
            img = np.fliplr(img)

        batch = {Batch.inputs: img}

        if self.has_gt:
            stride = self.cfg.stride

            if mirror:
                joints = [
                    self.mirror_joints(
                        person_joints, self.symmetric_joints, image.shape[1]
                    )
                    for person_joints in joints
                ]

            # print("Input size: ", scaled_img_size)
            # print("Stride: ", stride)
            sm_size = np.ceil(scaled_img_size / (stride * 2)).astype(int) * 2
            if self.cfg.using_z_slices:
                sm_size[0] = scaled_img_size[0] # z should not be "strided"
            print(f"Resized to {sm_size} from {image.shape} using scale {scale}")

            if not self.cfg.using_z_slices:
                scaled_joints = [person_joints[:, 1:3] * scale for person_joints in joints]
            else:
                # print("Scale ", scale)
                scaled_joints = [person_joints[:, 1:4] * scale for person_joints in joints]
                # [print("Person joints ", person_joints) for person_joints in joints]

            joint_id = [person_joints[:, 0].astype(int) for person_joints in joints]
            if not self.cfg.using_z_slices:
                compute = self.compute_target_part_scoremap
            else:
                compute = self.compute_target_part_scoremap_slices
            (
                part_score_targets,
                part_score_weights,
                locref_targets,
                locref_mask,
            ) = compute(joint_id, scaled_joints, data_item, sm_size, scale)

            # print("part_score_targets: ", part_score_targets.shape)
            # print("locref_targets: ", locref_targets.shape)

            batch.update(
                {
                    Batch.part_score_targets: part_score_targets,
                    Batch.part_score_weights: part_score_weights,
                    Batch.locref_targets: locref_targets,
                    Batch.locref_mask: locref_mask,
                }
            )

        batch = {key: data_to_input(data) for (key, data) in batch.items()}

        batch[Batch.data_item] = data_item

        return batch