def show_heatmaps(cfg, img, scmap, pose, cmap="jet"): interp = "bilinear" all_joints = cfg.all_joints all_joints_names = cfg.all_joints_names subplot_width = 3 subplot_height = math.ceil((len(all_joints) + 1) / subplot_width) f, axarr = plt.subplots(subplot_height, subplot_width) for pidx, part in enumerate(all_joints): plot_j = (pidx + 1) // subplot_width plot_i = (pidx + 1) % subplot_width scmap_part = np.sum(scmap[:, :, part], axis=2) scmap_part = imresize(scmap_part, 8.0, interp="bicubic") scmap_part = np.lib.pad(scmap_part, ((4, 0), (4, 0)), "minimum") curr_plot = axarr[plot_j, plot_i] curr_plot.set_title(all_joints_names[pidx]) curr_plot.axis("off") curr_plot.imshow(img, interpolation=interp) curr_plot.imshow(scmap_part, alpha=0.5, cmap=cmap, interpolation=interp) curr_plot = axarr[0, 0] curr_plot.set_title("Pose") curr_plot.axis("off") curr_plot.imshow(visualize_joints(img, pose)) plt.show()
def make_batch(self, data_item, scale, mirror): im_file = data_item.im_path logging.debug("image %s", im_file) logging.debug("mirror %r", mirror) image = imread(os.path.join(self.cfg["project_path"], im_file), mode="skimage") if self.has_gt: joints = np.copy(data_item.joints) if self.cfg["crop"]: # adapted cropping for DLC if np.random.rand() < self.cfg["cropratio"]: j = np.random.randint(np.shape(joints)[1]) joints, image = crop_image(joints, image, joints[0, j, 1], joints[0, j, 2], self.cfg) img = imresize(image, scale) if scale != 1 else image scaled_img_size = np.array(img.shape[0:2]) if mirror: img = np.fliplr(img) batch = {Batch.inputs: img} if self.has_gt: stride = self.cfg["stride"] if mirror: joints = [ self.mirror_joints(person_joints, self.symmetric_joints, image.shape[1]) for person_joints in joints ] sm_size = np.ceil(scaled_img_size / (stride * 2)).astype(int) * 2 scaled_joints = [ person_joints[:, 1:3] * scale for person_joints in joints ] joint_id = [ person_joints[:, 0].astype(int) for person_joints in joints ] ( part_score_targets, part_score_weights, locref_targets, locref_mask, ) = self.compute_target_part_scoremap(joint_id, scaled_joints, data_item, sm_size, scale) batch.update({ Batch.part_score_targets: part_score_targets, Batch.part_score_weights: part_score_weights, Batch.locref_targets: locref_targets, Batch.locref_mask: locref_mask, }) batch = {key: data_to_input(data) for (key, data) in batch.items()} batch[Batch.data_item] = data_item return batch
def display_dataset(): logging.basicConfig(level=logging.DEBUG) cfg = load_config() dataset = PoseDatasetFactory.create(cfg) dataset.set_shuffle(False) while True: batch = dataset.next_batch() for frame_id in range(1): img = batch[Batch.inputs][frame_id, :, :, :] img = np.squeeze(img).astype("uint8") scmap = batch[Batch.part_score_targets][frame_id, :, :, :] scmap = np.squeeze(scmap) # scmask = batch[Batch.part_score_weights] # if scmask.size > 1: # scmask = np.squeeze(scmask).astype('uint8') # else: # scmask = np.zeros(img.shape) subplot_height = 4 subplot_width = 5 num_plots = subplot_width * subplot_height f, axarr = plt.subplots(subplot_height, subplot_width) for j in range(num_plots): plot_j = j // subplot_width plot_i = j % subplot_width curr_plot = axarr[plot_j, plot_i] curr_plot.axis("off") if j >= cfg["num_joints"]: continue scmap_part = scmap[:, :, j] scmap_part = imresize(scmap_part, 8.0, interp="nearest") scmap_part = np.lib.pad(scmap_part, ((4, 0), (4, 0)), "minimum") curr_plot.set_title("{}".format(j + 1)) curr_plot.imshow(img) curr_plot.hold(True) curr_plot.imshow(scmap_part, alpha=0.5) # figure(0) # plt.imshow(np.sum(scmap, axis=2)) # plt.figure(100) # plt.imshow(img) # plt.figure(2) # plt.imshow(scmask) plt.show() plt.waitforbuttonpress()
def evaluate_network( config, Shuffles=[1], trainingsetindex=0, plotting=False, show_errors=True, comparisonbodyparts="all", gputouse=None, rescale=False, modelprefix="", ): """ Evaluates the network based on the saved models at different stages of the training network.\n The evaluation results are stored in the .h5 and .csv file under the subdirectory 'evaluation_results'. Change the snapshotindex parameter in the config file to 'all' in order to evaluate all the saved models. Parameters ---------- config : string Full path of the config.yaml file as a string. Shuffles: list, optional List of integers specifying the shuffle indices of the training dataset. The default is [1] trainingsetindex: int, optional Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml). This variable can also be set to "all". plotting: bool or str, optional Plots the predictions on the train and test images. The default is ``False``; if provided it must be either ``True``, ``False``, "bodypart", or "individual". Setting to ``True`` defaults as "bodypart" for multi-animal projects. show_errors: bool, optional Display train and test errors. The default is `True`` comparisonbodyparts: list of bodyparts, Default is "all". The average error will be computed for those body parts only (Has to be a subset of the body parts). gputouse: int, optional. Natural number indicating the number of your GPU (see number in nvidia-smi). If you do not have a GPU put None. See: https://nvidia.custhelp.com/app/answers/detail/a_id/3751/~/useful-nvidia-smi-queries rescale: bool, default False Evaluate the model at the 'global_scale' variable (as set in the test/pose_config.yaml file for a particular project). I.e. every image will be resized according to that scale and prediction will be compared to the resized ground truth. The error will be reported in pixels at rescaled to the *original* size. I.e. For a [200,200] pixel image evaluated at global_scale=.5, the predictions are calculated on [100,100] pixel images, compared to 1/2*ground truth and this error is then multiplied by 2!. The evaluation images are also shown for the original size! Examples -------- If you do not want to plot, just evaluate shuffle 1. >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml', Shuffles=[1]) -------- If you want to plot and evaluate shuffle 0 and 1. >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml',Shuffles=[0, 1],plotting = True) -------- If you want to plot assemblies for a maDLC project: >>> deeplabcut.evaluate_network('/analysis/project/reaching-task/config.yaml',Shuffles=[1],plotting = "individual") Note: this defaults to standard plotting for single-animal projects. """ if plotting not in (True, False, "bodypart", "individual"): raise ValueError(f"Unknown value for `plotting`={plotting}") import os start_path = os.getcwd() from deeplabcut.utils import auxiliaryfunctions cfg = auxiliaryfunctions.read_config(config) if cfg.get("multianimalproject", False): from .evaluate_multianimal import evaluate_multianimal_full # TODO: Make this code not so redundant! evaluate_multianimal_full( config=config, Shuffles=Shuffles, trainingsetindex=trainingsetindex, plotting=plotting, comparisonbodyparts=comparisonbodyparts, gputouse=gputouse, modelprefix=modelprefix, ) else: from deeplabcut.utils.auxfun_videos import imread, imresize from deeplabcut.pose_estimation_tensorflow.core import predict from deeplabcut.pose_estimation_tensorflow.config import load_config from deeplabcut.pose_estimation_tensorflow.datasets.utils import data_to_input from deeplabcut.utils import auxiliaryfunctions, conversioncode import tensorflow as tf # If a string was passed in, auto-convert to True for backward compatibility plotting = bool(plotting) if "TF_CUDNN_USE_AUTOTUNE" in os.environ: del os.environ[ "TF_CUDNN_USE_AUTOTUNE"] # was potentially set during training tf.compat.v1.reset_default_graph() os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # # tf.logging.set_verbosity(tf.logging.WARN) start_path = os.getcwd() # Read file path for pose_config file. >> pass it on cfg = auxiliaryfunctions.read_config(config) if gputouse is not None: # gpu selectinon os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse) if trainingsetindex == "all": TrainingFractions = cfg["TrainingFraction"] else: if (trainingsetindex < len(cfg["TrainingFraction"]) and trainingsetindex >= 0): TrainingFractions = [ cfg["TrainingFraction"][int(trainingsetindex)] ] else: raise Exception( "Please check the trainingsetindex! ", trainingsetindex, " should be an integer from 0 .. ", int(len(cfg["TrainingFraction"]) - 1), ) # Loading human annotatated data trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg) Data = pd.read_hdf( os.path.join( cfg["project_path"], str(trainingsetfolder), "CollectedData_" + cfg["scorer"] + ".h5", )) # Get list of body parts to evaluate network for comparisonbodyparts = ( auxiliaryfunctions.IntersectionofBodyPartsandOnesGivenbyUser( cfg, comparisonbodyparts)) # Make folder for evaluation auxiliaryfunctions.attempttomakefolder( str(cfg["project_path"] + "/evaluation-results/")) for shuffle in Shuffles: for trainFraction in TrainingFractions: ################################################## # Load and setup CNN part detector ################################################## datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction, shuffle, cfg) modelfolder = os.path.join( cfg["project_path"], str( auxiliaryfunctions.GetModelFolder( trainFraction, shuffle, cfg, modelprefix=modelprefix)), ) path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml" # Load meta data ( data, trainIndices, testIndices, trainFraction, ) = auxiliaryfunctions.LoadMetadata( os.path.join(cfg["project_path"], metadatafn)) try: dlc_cfg = load_config(str(path_test_config)) except FileNotFoundError: raise FileNotFoundError( "It seems the model for shuffle %s and trainFraction %s does not exist." % (shuffle, trainFraction)) # change batch size, if it was edited during analysis! dlc_cfg[ "batch_size"] = 1 # in case this was edited for analysis. # Create folder structure to store results. evaluationfolder = os.path.join( cfg["project_path"], str( auxiliaryfunctions.GetEvaluationFolder( trainFraction, shuffle, cfg, modelprefix=modelprefix)), ) auxiliaryfunctions.attempttomakefolder(evaluationfolder, recursive=True) # path_train_config = modelfolder / 'train' / 'pose_cfg.yaml' # Check which snapshots are available and sort them by # iterations Snapshots = np.array([ fn.split(".")[0] for fn in os.listdir( os.path.join(str(modelfolder), "train")) if "index" in fn ]) try: # check if any where found? Snapshots[0] except IndexError: raise FileNotFoundError( "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so." % (shuffle, trainFraction)) increasing_indices = np.argsort( [int(m.split("-")[1]) for m in Snapshots]) Snapshots = Snapshots[increasing_indices] if cfg["snapshotindex"] == -1: snapindices = [-1] elif cfg["snapshotindex"] == "all": snapindices = range(len(Snapshots)) elif cfg["snapshotindex"] < len(Snapshots): snapindices = [cfg["snapshotindex"]] else: raise ValueError( "Invalid choice, only -1 (last), any integer up to last, or all (as string)!" ) final_result = [] ########################### RESCALING (to global scale) if rescale: scale = dlc_cfg["global_scale"] Data = (pd.read_hdf( os.path.join( cfg["project_path"], str(trainingsetfolder), "CollectedData_" + cfg["scorer"] + ".h5", )) * scale) else: scale = 1 conversioncode.guarantee_multiindex_rows(Data) ################################################## # Compute predictions over images ################################################## for snapindex in snapindices: dlc_cfg["init_weights"] = os.path.join( str(modelfolder), "train", Snapshots[snapindex] ) # setting weights to corresponding snapshot. trainingsiterations = ( dlc_cfg["init_weights"].split(os.sep)[-1] ).split( "-" )[-1] # read how many training siterations that corresponds to. # Name for deeplabcut net (based on its parameters) DLCscorer, DLCscorerlegacy = auxiliaryfunctions.GetScorerName( cfg, shuffle, trainFraction, trainingsiterations, modelprefix=modelprefix, ) print( "Running ", DLCscorer, " with # of training iterations:", trainingsiterations, ) ( notanalyzed, resultsfilename, DLCscorer, ) = auxiliaryfunctions.CheckifNotEvaluated( str(evaluationfolder), DLCscorer, DLCscorerlegacy, Snapshots[snapindex], ) if notanalyzed: # Specifying state of model (snapshot / training state) sess, inputs, outputs = predict.setup_pose_prediction( dlc_cfg) Numimages = len(Data.index) PredicteData = np.zeros( (Numimages, 3 * len(dlc_cfg["all_joints_names"]))) print("Running evaluation ...") for imageindex, imagename in tqdm(enumerate( Data.index)): image = imread( os.path.join(cfg["project_path"], *imagename), mode="skimage", ) if scale != 1: image = imresize(image, scale) image_batch = data_to_input(image) # Compute prediction with the CNN outputs_np = sess.run( outputs, feed_dict={inputs: image_batch}) scmap, locref = predict.extract_cnn_output( outputs_np, dlc_cfg) # Extract maximum scoring location from the heatmap, assume 1 person pose = predict.argmax_pose_predict( scmap, locref, dlc_cfg["stride"]) PredicteData[imageindex, :] = ( pose.flatten() ) # NOTE: thereby cfg_test['all_joints_names'] should be same order as bodyparts! sess.close() # closes the current tf session index = pd.MultiIndex.from_product( [ [DLCscorer], dlc_cfg["all_joints_names"], ["x", "y", "likelihood"], ], names=["scorer", "bodyparts", "coords"], ) # Saving results DataMachine = pd.DataFrame(PredicteData, columns=index, index=Data.index) DataMachine.to_hdf(resultsfilename, "df_with_missing") print( "Analysis is done and the results are stored (see evaluation-results) for snapshot: ", Snapshots[snapindex], ) DataCombined = pd.concat([Data.T, DataMachine.T], axis=0, sort=False).T RMSE, RMSEpcutoff = pairwisedistances( DataCombined, cfg["scorer"], DLCscorer, cfg["pcutoff"], comparisonbodyparts, ) testerror = np.nanmean( RMSE.iloc[testIndices].values.flatten()) trainerror = np.nanmean( RMSE.iloc[trainIndices].values.flatten()) testerrorpcutoff = np.nanmean( RMSEpcutoff.iloc[testIndices].values.flatten()) trainerrorpcutoff = np.nanmean( RMSEpcutoff.iloc[trainIndices].values.flatten()) results = [ trainingsiterations, int(100 * trainFraction), shuffle, np.round(trainerror, 2), np.round(testerror, 2), cfg["pcutoff"], np.round(trainerrorpcutoff, 2), np.round(testerrorpcutoff, 2), ] final_result.append(results) if show_errors: print( "Results for", trainingsiterations, " training iterations:", int(100 * trainFraction), shuffle, "train error:", np.round(trainerror, 2), "pixels. Test error:", np.round(testerror, 2), " pixels.", ) print( "With pcutoff of", cfg["pcutoff"], " train error:", np.round(trainerrorpcutoff, 2), "pixels. Test error:", np.round(testerrorpcutoff, 2), "pixels", ) if scale != 1: print( "The predictions have been calculated for rescaled images (and rescaled ground truth). Scale:", scale, ) print( "Thereby, the errors are given by the average distances between the labels by DLC and the scorer." ) if plotting: print("Plotting...") foldername = os.path.join( str(evaluationfolder), "LabeledImages_" + DLCscorer + "_" + Snapshots[snapindex], ) auxiliaryfunctions.attempttomakefolder(foldername) Plotting( cfg, comparisonbodyparts, DLCscorer, trainIndices, DataCombined * 1.0 / scale, foldername, ) # Rescaling coordinates to have figure in original size! tf.compat.v1.reset_default_graph() # print(final_result) else: DataMachine = pd.read_hdf(resultsfilename) conversioncode.guarantee_multiindex_rows(DataMachine) if plotting: DataCombined = pd.concat([Data.T, DataMachine.T], axis=0, sort=False).T print( "Plotting...(attention scale might be inconsistent in comparison to when data was analyzed; i.e. if you used rescale)" ) foldername = os.path.join( str(evaluationfolder), "LabeledImages_" + DLCscorer + "_" + Snapshots[snapindex], ) auxiliaryfunctions.attempttomakefolder(foldername) Plotting( cfg, comparisonbodyparts, DLCscorer, trainIndices, DataCombined * 1.0 / scale, foldername, ) if len(final_result ) > 0: # Only append if results were calculated make_results_file(final_result, evaluationfolder, DLCscorer) print( "The network is evaluated and the results are stored in the subdirectory 'evaluation_results'." ) print( "Please check the results, then choose the best model (snapshot) for prediction. You can update the config.yaml file with the appropriate index for the 'snapshotindex'.\nUse the function 'analyze_video' to make predictions on new videos." ) print( "Otherwise, consider adding more labeled-data and retraining the network (see DeepLabCut workflow Fig 2, Nath 2019)" ) # returning to initial folder os.chdir(str(start_path))
def extract_maps( config, shuffle=0, trainingsetindex=0, gputouse=None, rescale=False, Indices=None, modelprefix="", ): """ Extracts the scoremap, locref, partaffinityfields (if available). Returns a dictionary indexed by: trainingsetfraction, snapshotindex, and imageindex for those keys, each item contains: (image,scmap,locref,paf,bpt names,partaffinity graph, imagename, True/False if this image was in trainingset) ---------- config : string Full path of the config.yaml file as a string. shuffle: integer integers specifying shuffle index of the training dataset. The default is 0. trainingsetindex: int, optional Integer specifying which TrainingsetFraction to use. By default the first (note that TrainingFraction is a list in config.yaml). This variable can also be set to "all". rescale: bool, default False Evaluate the model at the 'global_scale' variable (as set in the test/pose_config.yaml file for a particular project). I.e. every image will be resized according to that scale and prediction will be compared to the resized ground truth. The error will be reported in pixels at rescaled to the *original* size. I.e. For a [200,200] pixel image evaluated at global_scale=.5, the predictions are calculated on [100,100] pixel images, compared to 1/2*ground truth and this error is then multiplied by 2!. The evaluation images are also shown for the original size! Examples -------- If you want to extract the data for image 0 and 103 (of the training set) for model trained with shuffle 0. >>> deeplabcut.extract_maps(configfile,0,Indices=[0,103]) """ from deeplabcut.utils.auxfun_videos import imread, imresize from deeplabcut.pose_estimation_tensorflow.nnet import predict from deeplabcut.pose_estimation_tensorflow.nnet import ( predict_multianimal as predictma, ) from deeplabcut.pose_estimation_tensorflow.config import load_config from deeplabcut.pose_estimation_tensorflow.dataset.pose_dataset import data_to_input from deeplabcut.utils import auxiliaryfunctions from tqdm import tqdm import tensorflow as tf vers = (tf.__version__).split(".") if int(vers[0]) == 1 and int(vers[1]) > 12: TF = tf.compat.v1 else: TF = tf import pandas as pd from pathlib import Path import numpy as np TF.reset_default_graph() os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # # tf.logging.set_verbosity(tf.logging.WARN) start_path = os.getcwd() # Read file path for pose_config file. >> pass it on cfg = auxiliaryfunctions.read_config(config) if gputouse is not None: # gpu selectinon os.environ["CUDA_VISIBLE_DEVICES"] = str(gputouse) if trainingsetindex == "all": TrainingFractions = cfg["TrainingFraction"] else: if trainingsetindex < len( cfg["TrainingFraction"]) and trainingsetindex >= 0: TrainingFractions = [ cfg["TrainingFraction"][int(trainingsetindex)] ] else: raise Exception( "Please check the trainingsetindex! ", trainingsetindex, " should be an integer from 0 .. ", int(len(cfg["TrainingFraction"]) - 1), ) # Loading human annotatated data trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg) Data = pd.read_hdf( os.path.join( cfg["project_path"], str(trainingsetfolder), "CollectedData_" + cfg["scorer"] + ".h5", ), "df_with_missing", ) # Make folder for evaluation auxiliaryfunctions.attempttomakefolder( str(cfg["project_path"] + "/evaluation-results/")) Maps = {} for trainFraction in TrainingFractions: Maps[trainFraction] = {} ################################################## # Load and setup CNN part detector ################################################## datafn, metadatafn = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction, shuffle, cfg) modelfolder = os.path.join( cfg["project_path"], str( auxiliaryfunctions.GetModelFolder(trainFraction, shuffle, cfg, modelprefix=modelprefix)), ) path_test_config = Path(modelfolder) / "test" / "pose_cfg.yaml" # Load meta data ( data, trainIndices, testIndices, trainFraction, ) = auxiliaryfunctions.LoadMetadata( os.path.join(cfg["project_path"], metadatafn)) try: dlc_cfg = load_config(str(path_test_config)) except FileNotFoundError: raise FileNotFoundError( "It seems the model for shuffle %s and trainFraction %s does not exist." % (shuffle, trainFraction)) # change batch size, if it was edited during analysis! dlc_cfg["batch_size"] = 1 # in case this was edited for analysis. # Create folder structure to store results. evaluationfolder = os.path.join( cfg["project_path"], str( auxiliaryfunctions.GetEvaluationFolder( trainFraction, shuffle, cfg, modelprefix=modelprefix)), ) auxiliaryfunctions.attempttomakefolder(evaluationfolder, recursive=True) # path_train_config = modelfolder / 'train' / 'pose_cfg.yaml' # Check which snapshots are available and sort them by # iterations Snapshots = np.array([ fn.split(".")[0] for fn in os.listdir(os.path.join(str(modelfolder), "train")) if "index" in fn ]) try: # check if any where found? Snapshots[0] except IndexError: raise FileNotFoundError( "Snapshots not found! It seems the dataset for shuffle %s and trainFraction %s is not trained.\nPlease train it before evaluating.\nUse the function 'train_network' to do so." % (shuffle, trainFraction)) increasing_indices = np.argsort( [int(m.split("-")[1]) for m in Snapshots]) Snapshots = Snapshots[increasing_indices] if cfg["snapshotindex"] == -1: snapindices = [-1] elif cfg["snapshotindex"] == "all": snapindices = range(len(Snapshots)) elif cfg["snapshotindex"] < len(Snapshots): snapindices = [cfg["snapshotindex"]] else: print( "Invalid choice, only -1 (last), any integer up to last, or all (as string)!" ) ########################### RESCALING (to global scale) scale = dlc_cfg["global_scale"] if rescale else 1 Data *= scale bptnames = [ dlc_cfg["all_joints_names"][i] for i in range(len(dlc_cfg["all_joints"])) ] for snapindex in snapindices: dlc_cfg["init_weights"] = os.path.join( str(modelfolder), "train", Snapshots[snapindex] ) # setting weights to corresponding snapshot. trainingsiterations = ( dlc_cfg["init_weights"].split(os.sep)[-1] ).split("-")[ -1] # read how many training siterations that corresponds to. # Name for deeplabcut net (based on its parameters) # DLCscorer,DLCscorerlegacy = auxiliaryfunctions.GetScorerName(cfg,shuffle,trainFraction,trainingsiterations) # notanalyzed, resultsfilename, DLCscorer=auxiliaryfunctions.CheckifNotEvaluated(str(evaluationfolder),DLCscorer,DLCscorerlegacy,Snapshots[snapindex]) # print("Extracting maps for ", DLCscorer, " with # of trainingiterations:", trainingsiterations) # if notanalyzed: #this only applies to ask if h5 exists... # Specifying state of model (snapshot / training state) sess, inputs, outputs = predict.setup_pose_prediction(dlc_cfg) Numimages = len(Data.index) PredicteData = np.zeros( (Numimages, 3 * len(dlc_cfg["all_joints_names"]))) print("Analyzing data...") if Indices is None: Indices = enumerate(Data.index) else: Ind = [Data.index[j] for j in Indices] Indices = enumerate(Ind) DATA = {} for imageindex, imagename in tqdm(Indices): image = imread(os.path.join(cfg["project_path"], imagename), mode="RGB") if scale != 1: image = imresize(image, scale) image_batch = data_to_input(image) # Compute prediction with the CNN outputs_np = sess.run(outputs, feed_dict={inputs: image_batch}) if cfg.get("multianimalproject", False): scmap, locref, paf = predictma.extract_cnn_output( outputs_np, dlc_cfg) pagraph = dlc_cfg["partaffinityfield_graph"] else: scmap, locref = predict.extract_cnn_output( outputs_np, dlc_cfg) paf = None pagraph = [] if imageindex in testIndices: trainingfram = False else: trainingfram = True DATA[imageindex] = [ image, scmap, locref, paf, bptnames, pagraph, imagename, trainingfram, ] Maps[trainFraction][Snapshots[snapindex]] = DATA os.chdir(str(start_path)) return Maps
Augmentations.append([augtype, seq]) augtype = 'fog' seq = iaa.Sequential([iaa.Fog()]) Augmentations.append([augtype, seq]) augtype = 'snow' seq = iaa.Sequential([ iaa.Snowflakes(flake_size=(.2, .5), density=(0.005, 0.07), speed=(0.01, 0.05)) ]) Augmentations.append([augtype, seq]) for ind, imname in enumerate(Dataframe.index): image = imresize(imread(os.path.join('montblanc_images', imname)), size=scale) ny, nx, nc = np.shape(image) kpts = [] for i in individuals: for b in bodyparts: x, y = Dataframe.iloc[ind][scorer][i][b]['x'], Dataframe.iloc[ind][ scorer][i][b]['y'] if np.isfinite(x) and np.isfinite(y): kpts.append(Keypoint(x=x * scale, y=y * scale)) kps = KeypointsOnImage(kpts, shape=image.shape) cells = [] # image with keypoints before augmentation
def make_batch(self, data_item, scale, mirror): im_file = data_item.im_path logging.debug("image %s", im_file) logging.debug("mirror %r", mirror) image = imread(os.path.join(self.cfg['project_path'], im_file), mode="RGB") if self.has_gt: joints = np.copy(data_item.joints) if self.cfg['crop']: # adapted cropping for DLC if np.random.rand() < self.cfg['cropratio']: j = np.random.randint(np.shape(joints)[1]) # pick a random joint joints, image = CropImage( joints, image, joints[0, j, 1], joints[0, j, 2], self.cfg ) """ print(joints) import matplotlib.pyplot as plt plt.clf() plt.imshow(image) plt.plot(joints[0,:,1],joints[0,:,2],'.') plt.savefig("abc"+str(np.random.randint(int(1e6)))+".png") """ else: pass # no cropping! img = imresize(image, scale) if scale != 1 else image scaled_img_size = arr(img.shape[0:2]) if mirror: img = np.fliplr(img) batch = {Batch.inputs: img} if self.has_gt: stride = self.cfg['stride'] if mirror: joints = [ self.mirror_joints( person_joints, self.symmetric_joints, image.shape[1] ) for person_joints in joints ] sm_size = np.ceil(scaled_img_size / (stride * 2)).astype(int) * 2 scaled_joints = [person_joints[:, 1:3] * scale for person_joints in joints] joint_id = [person_joints[:, 0].astype(int) for person_joints in joints] ( part_score_targets, part_score_weights, locref_targets, locref_mask, ) = self.compute_target_part_scoremap( joint_id, scaled_joints, data_item, sm_size, scale ) batch.update( { Batch.part_score_targets: part_score_targets, Batch.part_score_weights: part_score_weights, Batch.locref_targets: locref_targets, Batch.locref_mask: locref_mask, } ) batch = {key: data_to_input(data) for (key, data) in batch.items()} batch[Batch.data_item] = data_item return batch
def make_batch(self, data_item, scale, mirror): im_file = data_item.im_path logging.debug("image %s", im_file) logging.debug("mirror %r", mirror) # print(im_file, os.getcwd()) # print(self.cfg.project_path) image = imread(os.path.join(self.cfg.project_path, im_file), mode="RGB") if self.has_gt: joints = np.copy(data_item.joints) if self.cfg.crop: # adapted cropping for DLC if np.random.rand() < self.cfg.cropratio: # 1. get center of joints j = np.random.randint( np.shape(joints)[1]) # pick a random joint # draw random crop dimensions & subtract joint points # print(joints,j,'ahah') joints, image = CropImage(joints, image, joints[0, j, 1], joints[0, j, 2], self.cfg) # if self.has_gt: # joints[0,:, 1] -= x0 # joints[0,:, 2] -= y0 """ print(joints) import matplotlib.pyplot as plt plt.clf() plt.imshow(image) plt.plot(joints[0,:,1],joints[0,:,2],'.') plt.savefig("abc"+str(np.random.randint(int(1e6)))+".png") """ else: pass # no cropping! # Charlie addition if not self.cfg.using_z_slices: img = imresize(image, scale) if scale != 1 else image scaled_img_size = arr(img.shape[0:2]) else: img = imresize(image, scale) if scale < 1 else image scaled_img_size = arr(img.shape[0:3]) if mirror: img = np.fliplr(img) batch = {Batch.inputs: img} if self.has_gt: stride = self.cfg.stride if mirror: joints = [ self.mirror_joints(person_joints, self.symmetric_joints, image.shape[1]) for person_joints in joints ] sm_size = np.ceil(scaled_img_size / (stride * 2)).astype(int) * 2 scaled_joints = [ person_joints[:, 1:3] * scale for person_joints in joints ] joint_id = [ person_joints[:, 0].astype(int) for person_joints in joints ] ( part_score_targets, part_score_weights, locref_targets, locref_mask, ) = self.compute_target_part_scoremap(joint_id, scaled_joints, data_item, sm_size, scale) batch.update({ Batch.part_score_targets: part_score_targets, Batch.part_score_weights: part_score_weights, Batch.locref_targets: locref_targets, Batch.locref_mask: locref_mask, }) batch = {key: data_to_input(data) for (key, data) in batch.items()} batch[Batch.data_item] = data_item return batch
Augmentations.append([augtype, seq]) augtype = 'edgedetect' seq = iaa.Sequential([iaa.EdgeDetect(alpha=(0.8, 1.0))]) Augmentations.append([augtype, seq]) augtype = 'flipud' seq = iaa.Sequential([iaa.Flipud(1)]) Augmentations.append([augtype, seq]) augtype = 'fliplr' seq = iaa.Sequential([iaa.Fliplr(1)]) Augmentations.append([augtype, seq]) for ind, imname in enumerate(Dataframe.index): image = imresize(imread(os.path.join(imfolder, imname)), size=scale) ny, nx, nc = np.shape(image) kpts = [] for b in bodyparts: x, y = Dataframe.iloc[ind][scorer][b]['x'], Dataframe.iloc[ind][ scorer][b]['y'] if np.isfinite(x) and np.isfinite(y): kpts.append(Keypoint(x=x * scale, y=y * scale)) kps = KeypointsOnImage(kpts, shape=image.shape) cells = [] # image with keypoints before augmentation image_before = kps.draw_on_image(image,
def make_batch(self, data_item, scale, mirror): im_file = data_item.im_path logging.debug("image %s", im_file) logging.debug("mirror %r", mirror) # print(im_file, os.getcwd()) # print(self.cfg.project_path) vid_fname = os.path.join(self.cfg.project_path, im_file) image = imread(vid_fname, mode="RGB") # print("Full image filename: ", vid_fname) # print("Shape of read image: ", image.shape) if self.has_gt: joints = np.copy(data_item.joints) if self.cfg.crop: # adapted cropping for DLC if np.random.rand() < self.cfg.cropratio: j = np.random.randint(np.shape(joints)[1]) # pick a random joint joints, image = CropImage( joints, image, joints[0, j, 1], joints[0, j, 2], self.cfg ) """ print(joints) import matplotlib.pyplot as plt plt.clf() plt.imshow(image) plt.plot(joints[0,:,1],joints[0,:,2],'.') plt.savefig("abc"+str(np.random.randint(int(1e6)))+".png") """ else: pass # no cropping! # Charlie addition if not self.cfg['using_z_slices']: img = imresize(image, scale) if scale != 1 else image scaled_img_size = arr(img.shape[0:2]) else: # img = imresize(image, scale) if scale < 1 else image # if scale != 1: # zspan = range(image.shape[0]) # img = np.array([imresize(image[z,...], scale) for z in zspan]) # print(f"{img.shape}") # else: # img = image img = image # Just ignore scale scaled_img_size = arr(img.shape[:3]) # Ignore color if mirror: img = np.fliplr(img) batch = {Batch.inputs: img} if self.has_gt: stride = self.cfg.stride if mirror: joints = [ self.mirror_joints( person_joints, self.symmetric_joints, image.shape[1] ) for person_joints in joints ] # print("Input size: ", scaled_img_size) # print("Stride: ", stride) sm_size = np.ceil(scaled_img_size / (stride * 2)).astype(int) * 2 if self.cfg.using_z_slices: sm_size[0] = scaled_img_size[0] # z should not be "strided" print(f"Resized to {sm_size} from {image.shape} using scale {scale}") if not self.cfg.using_z_slices: scaled_joints = [person_joints[:, 1:3] * scale for person_joints in joints] else: # print("Scale ", scale) scaled_joints = [person_joints[:, 1:4] * scale for person_joints in joints] # [print("Person joints ", person_joints) for person_joints in joints] joint_id = [person_joints[:, 0].astype(int) for person_joints in joints] if not self.cfg.using_z_slices: compute = self.compute_target_part_scoremap else: compute = self.compute_target_part_scoremap_slices ( part_score_targets, part_score_weights, locref_targets, locref_mask, ) = compute(joint_id, scaled_joints, data_item, sm_size, scale) # print("part_score_targets: ", part_score_targets.shape) # print("locref_targets: ", locref_targets.shape) batch.update( { Batch.part_score_targets: part_score_targets, Batch.part_score_weights: part_score_weights, Batch.locref_targets: locref_targets, Batch.locref_mask: locref_mask, } ) batch = {key: data_to_input(data) for (key, data) in batch.items()} batch[Batch.data_item] = data_item return batch