Example #1
0
def test_SDM():
    model_name = "SDM"
    x, y, user_feature_columns, item_feature_columns, history_feature_list = get_xy_fd_sdm(False)

    if tf.__version__ >= '2.0.0':
        tf.compat.v1.disable_eager_execution()
    else:
        K.set_learning_phase(True)
    model = SDM(user_feature_columns, item_feature_columns, history_feature_list, units=8)
    # model.summary()

    model.compile('adam', sampledsoftmaxloss)
    check_model(model, model_name, x, y)
Example #2
0
                            VarLenSparseFeat(SparseFeat('prefer_genres', feature_max_idx['genres'], embedding_dim,
                                                        embedding_name="genres"), SEQ_LEN_prefer, 'mean',
                                             'prefer_sess_length'),
                            ]

    item_feature_columns = [SparseFeat('movie_id', feature_max_idx['movie_id'], embedding_dim)]

    K.set_learning_phase(True)

    import tensorflow as tf

    if tf.__version__ >= '2.0.0':
        tf.compat.v1.disable_eager_execution()

    # units must be equal to item embedding dim!
    model = SDM(user_feature_columns, item_feature_columns, history_feature_list=['movie_id', 'genres'],
                units=embedding_dim, num_sampled=100, )

    model.compile(optimizer='adam', loss=sampledsoftmaxloss)  # "binary_crossentropy")

    history = model.fit(train_model_input, train_label,  # train_label,
                        batch_size=512, epochs=1, verbose=1, validation_split=0.0, )

    K.set_learning_phase(False)
    # 3.Define Model,train,predict and evaluate
    test_user_model_input = test_model_input
    all_item_model_input = {"movie_id": item_profile['movie_id'].values, }

    user_embedding_model = Model(inputs=model.user_input, outputs=model.user_embedding)
    item_embedding_model = Model(inputs=model.item_input, outputs=model.item_embedding)

    user_embs = user_embedding_model.predict(test_user_model_input, batch_size=2 ** 12)