def _setUp(self): run_opt = RunOptions(restart=None, init_model=None, log_path=None, log_level=30, mpi_log="master") jdata = j_loader(INPUT) # init model model = DPTrainer(jdata, run_opt=run_opt) rcut = model.model.get_rcut() # init data system systems = j_must_have(jdata['training'], 'systems') #systems[0] = tests_path / systems[0] systems = [tests_path / ii for ii in systems] set_pfx = j_must_have(jdata['training'], 'set_prefix') batch_size = j_must_have(jdata['training'], 'batch_size') test_size = j_must_have(jdata['training'], 'numb_test') data = DeepmdDataSystem(systems, batch_size, test_size, rcut, set_prefix=set_pfx) data.add_dict(data_requirement) # clear the default graph tf.reset_default_graph() # build the model with stats from the first system model.build(data) # freeze the graph with self.test_session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) graph = tf.get_default_graph() input_graph_def = graph.as_graph_def() nodes = "o_dipole,o_rmat,o_rmat_deriv,o_nlist,o_rij,descrpt_attr/rcut,descrpt_attr/ntypes,descrpt_attr/sel,descrpt_attr/ndescrpt,model_attr/tmap,model_attr/sel_type,model_attr/model_type,model_attr/output_dim,model_attr/model_version" output_graph_def = tf.graph_util.convert_variables_to_constants( sess, input_graph_def, nodes.split(",")) output_graph = str(tests_path / os.path.join(modifier_datapath, 'dipole.pb')) with tf.gfile.GFile(output_graph, "wb") as f: f.write(output_graph_def.SerializeToString())
def _setUp(self): args = Args() run_opt = RunOptions(args, False) with open (args.INPUT, 'r') as fp: jdata = json.load (fp) # init model model = NNPTrainer (jdata, run_opt = run_opt) rcut = model.model.get_rcut() # init data system systems = j_must_have(jdata['training'], 'systems') set_pfx = j_must_have(jdata['training'], 'set_prefix') batch_size = j_must_have(jdata['training'], 'batch_size') test_size = j_must_have(jdata['training'], 'numb_test') data = DeepmdDataSystem(systems, batch_size, test_size, rcut, set_prefix=set_pfx) data.add_dict(data_requirement) # clear the default graph tf.reset_default_graph() # build the model with stats from the first system model.build (data) # freeze the graph with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) graph = tf.get_default_graph() input_graph_def = graph.as_graph_def() nodes = "o_dipole,o_rmat,o_rmat_deriv,o_nlist,o_rij,descrpt_attr/rcut,descrpt_attr/ntypes,descrpt_attr/sel,descrpt_attr/ndescrpt,model_attr/tmap,model_attr/sel_type,model_attr/model_type" output_graph_def = tf.graph_util.convert_variables_to_constants( sess, input_graph_def, nodes.split(",") ) output_graph = os.path.join(modifier_datapath, 'dipole.pb') with tf.gfile.GFile(output_graph, "wb") as f: f.write(output_graph_def.SerializeToString())
def tearDown(self): tf.reset_default_graph()
def setUp(self): # with tf.variable_scope('load', reuse = False) : tf.reset_default_graph() self._setUp()
def tearDown(self): tf.reset_default_graph() if os.path.isdir(os.path.join(modifier_datapath, 'sys_test_0')): shutil.rmtree(os.path.join(modifier_datapath, 'sys_test_0')) if os.path.isfile(os.path.join(modifier_datapath, 'dipole.pb')): os.remove(os.path.join(modifier_datapath, 'dipole.pb'))