def test_ener_shift(self):
     dp_random.seed(0)
     data = DeepmdDataSystem(['system_0', 'system_1'], 5, 10, 1.0)
     data.add('energy', 1, must=True)
     ener_shift0 = data.compute_energy_shift(rcond=1)
     all_stat = make_stat_input(data, 4, merge_sys=False)
     ener_shift1 = EnerFitting._compute_output_stats(all_stat, rcond=1)
     np.testing.assert_almost_equal(ener_shift0, ener_shift1)
Example #2
0
 def test_ener_shift(self):
     dp_random.seed(0)
     data = DeepmdDataSystem(['system_0', 'system_1'], 5, 10, 1.0)
     data.add('energy', 1, must=True)
     ener_shift0 = data.compute_energy_shift(rcond=1)
     all_stat = make_stat_input(data, 4, merge_sys=False)
     descrpt = DescrptSeA(6.0,
                          5.8, [46, 92],
                          neuron=[25, 50, 100],
                          axis_neuron=16)
     fitting = EnerFitting(descrpt, neuron=[240, 240, 240], resnet_dt=True)
     ener_shift1 = fitting._compute_output_stats(all_stat, rcond=1)
     np.testing.assert_almost_equal(ener_shift0, ener_shift1)
Example #3
0
    def test_merge_all_stat(self):
        dp_random.seed(0)
        data0 = DeepmdDataSystem(['system_0', 'system_1'], 5, 10, 1.0)
        data0.add('energy', 1, must=True)
        dp_random.seed(0)
        data1 = DeepmdDataSystem(['system_0', 'system_1'], 5, 10, 1.0)
        data1.add('energy', 1, must=True)
        dp_random.seed(0)
        data2 = DeepmdDataSystem(['system_0', 'system_1'], 5, 10, 1.0)
        data2.add('energy', 1, must=True)

        dp_random.seed(0)
        all_stat_0 = make_stat_input(data0, 10, merge_sys=False)
        dp_random.seed(0)
        all_stat_1 = make_stat_input(data1, 10, merge_sys=True)
        all_stat_2 = merge_sys_stat(all_stat_0)
        dp_random.seed(0)
        all_stat_3 = _make_all_stat_ref(data2, 10)

        ####################################
        # only check if the energy is concatenated correctly
        ####################################
        dd = 'energy'
        # if 'find_' in dd: continue
        # if 'natoms_vec' in dd: continue
        # if 'default_mesh' in dd: continue
        # print(all_stat_2[dd])
        # print(dd, all_stat_1[dd])
        d1 = np.array(all_stat_1[dd])
        d2 = np.array(all_stat_2[dd])
        d3 = np.array(all_stat_3[dd])
        # print(dd)
        # print(d1.shape)
        # print(d2.shape)
        # self.assertEqual(all_stat_2[dd], all_stat_1[dd])
        self._comp_data(d1, d2)
        self._comp_data(d1, d3)
Example #4
0
 def test_ener_shift_assigned(self):
     dp_random.seed(0)
     ae0 = dp_random.random()
     data = DeepmdDataSystem(['system_0'], 5, 10, 1.0)
     data.add('energy', 1, must=True)
     all_stat = make_stat_input(data, 4, merge_sys=False)
     descrpt = DescrptSeA(6.0,
                          5.8, [46, 92],
                          neuron=[25, 50, 100],
                          axis_neuron=16)
     fitting = EnerFitting(descrpt,
                           neuron=[240, 240, 240],
                           resnet_dt=True,
                           atom_ener=[ae0, None, None])
     ener_shift1 = fitting._compute_output_stats(all_stat, rcond=1)
     # check assigned energy
     np.testing.assert_almost_equal(ae0, ener_shift1[0])
     # check if total energy are the same
     natoms = data.natoms_vec[0][2:]
     tot0 = np.dot(data.compute_energy_shift(rcond=1), natoms)
     tot1 = np.dot(ener_shift1, natoms)
     np.testing.assert_almost_equal(tot0, tot1)