Example #1
0
MASK = nib.load(MASK_PATH).get_data()
TRACT_MASKS = nib.load(TRACT_MASKS_PTH).get_data()
TRACT_MASKS = TRACT_MASKS[:, :, :, 1:]  # remove background class
SAVE_PATH = join(DATA_DIR, SUBJ_ID, "pca_stats_unnorm.npz")

ncs = list(range(1, 30))
stats = {
    "n_components": [],
    "scores": []
}

for nc in ncs:
    print("n_components = {}".format(nc).center(100, "-"))
    features, _ = dsutils.make_pca_volume(DATA, MASK, n_components=nc, normalize=False)
    train_slices = [('sagittal', 72), ('coronal', 87), ('axial', 72)]
    train_masks = dsutils.create_data_masks(TRACT_MASKS, train_slices, LABELS)
    X_train, y_train, train_coords = dsutils.create_dataset_from_data_mask(features,
                                                                           train_masks,
                                                                           labels=LABELS,
                                                                           multi_label=True)
    X_test, y_test, test_coords = dsutils.create_dataset_from_data_mask(features,
                                                                        TRACT_MASKS,
                                                                        labels=LABELS,
                                                                        multi_label=True)
    clf = RandomForestClassifier(n_estimators=100,
                                 bootstrap=True,
                                 oob_score=True,
                                 random_state=0,
                                 n_jobs=-1,
                                 max_features='auto',
                                 class_weight='balanced',
Example #2
0
            # transpose features
            if orient == 'coronal':
                orient_features = orient_features.transpose(1, 0, 2, 3)
            if orient == 'axial':
                orient_features = orient_features.transpose(1, 2, 0, 3)

            TRACT_MASKS = nib.load(TRACT_MASKS_PTH).get_data()
            TRACT_MASKS = TRACT_MASKS[:, :, :, 1:]  # remove background class

            FEATURES = orient_features

            # ---------------------------------------------Train Set----------------------------------------------

            train_slices = [('sagittal', 72), ('coronal', 87), ('axial', 72)]
            train_masks = dsutils.create_data_masks(TRACT_MASKS,
                                                    train_slices,
                                                    LABELS,
                                                    verbose=False)
            X_train, y_train, train_coords = dsutils.create_dataset_from_data_mask(
                FEATURES, train_masks, labels=LABELS, multi_label=True)
            if ADD_COORDS:
                X_train = np.concatenate((X_train, train_coords), axis=1)

            # --------------------------------------Random Forest Classifier--------------------------------------
            clf = RandomForestClassifier(n_estimators=100,
                                         bootstrap=True,
                                         oob_score=True,
                                         random_state=0,
                                         n_jobs=-1,
                                         max_features='auto',
                                         class_weight='balanced',
                                         max_depth=None,
Example #3
0
            x = data['data'].to(device)
            feature = encoder(x)
            orient_feature = feature.detach().cpu().squeeze().permute(1, 2, 0)
            idx = int(data['file_name'][0][:-4][-3:])
            features[idx] = orient_feature
        features = features.numpy()

        # transpose features
        features = features.transpose(1, 0, 2, 3)

    print("Features from epoch={} were created".format(epoch))

    # -----------------------------------------Prepare train set------------------------------------------
    print('Prepare train set'.center(100, '-'))
    train_slices = [('sagittal', 72), ('coronal', 87), ('axial', 72)]
    train_masks = dsutils.create_data_masks(ml_masks, train_slices, labels)
    X_train, y_train, train_coords = dsutils.create_dataset_from_data_mask(features,
                                                                           train_masks,
                                                                           multi_label=True)
    print("Trainset shape: ", X_train.shape)

    # ------------------------------------------Prepare test set------------------------------------------
    print('Prepare test set'.center(100, '-'))
    print("Test set is the whole brain volume.")
    # test_masks = ml_masks
    test_slices = [('sagittal', 71), ('coronal', 86), ('axial', 71)]
    test_masks = dsutils.create_data_masks(ml_masks, test_slices, labels)
    X_test, y_test, test_coords = dsutils.create_dataset_from_data_mask(features,
                                                                        test_masks,
                                                                        multi_label=True)
    print("Testset shape: ", X_test.shape)
dmri = nib.load(dmri_path)
print("dMRI shape: ", dmri.shape)
dmri_data = dmri.get_fdata()

# load masks
masks_path = os.path.join(data_dir, subj_id, 'tract_masks')
ml_masks = np.load(os.path.join(masks_path, 'multi_label_mask.npz'))['data']
ml_masks = ml_masks[:, :, :, 1:]  # remove background class
print("Mask shape: ", ml_masks.shape)

labels = ['Other', 'CG', 'CST', 'FX', 'CC']

training_slices = [('sagittal', 72), ('coronal', 87), ('axial', 72)]

# make training data
train_masks = dsutils.create_data_masks(ml_masks, training_slices, labels)
X_train, y_train, train_coords = dsutils.create_dataset_from_data_mask(
    dmri_data, train_masks, labels=labels, multi_label=True)

# make test data
test_masks = ml_masks
X_test, y_test, test_coords = dsutils.create_dataset_from_data_mask(
    dmri_data, test_masks, labels=labels, multi_label=True)
X_train = np.hstack((train_coords, X_train))
X_test = np.hstack((test_coords, X_test))
print("X_train: ", X_train.shape)
print("X_test: ", X_test.shape)

num_features = list(range(1, 289))
best_f1 = 0
best_n = None
Example #5
0
print("Preparing test sets.".center(100, "-"))
test_sets = {}
results = {}
orients_num_slices = {"axial": 145, "coronal": 174, "sagittal": 145}

orient_ranges = {
    "axial": range(52, 93),
    "coronal": range(67, 108),
    "sagittal": range(52, 93)
}

for orient, num_slices in orients_num_slices.items():
    for i in orient_ranges[orient]:
        mask_name = (orient, i)
        tmsk = dsutils.create_data_masks(TRACT_MASKS, [mask_name],
                                         LABELS,
                                         verbose=False)

        X_test, y_test, test_coords = dsutils.create_dataset_from_data_mask(
            FEATURES, tmsk, labels=LABELS, multi_label=True)
        if X_test.shape[0] == 0:
            continue
        if ADD_COORDS:
            X_test = np.concatenate((X_test, test_coords), axis=1)

        test_sets[mask_name] = {}
        test_sets[mask_name]["x"] = X_test
        test_sets[mask_name]["y"] = y_test
        test_sets[mask_name]["coords"] = test_coords
        results[mask_name] = 1