Example #1
0
def evaluate(cfg: EvalConfig):
    device = torch.device("cuda" if cfg.model.cuda else "cpu")

    model = load_model(device=device,
                       model_path=cfg.model.model_path,
                       use_half=cfg.model.use_half)

    decoder = load_decoder(labels=model.labels, cfg=cfg.lm)
    target_decoder = GreedyDecoder(model.labels,
                                   blank_index=model.labels.index('_'))
    test_dataset = SpectrogramDataset(
        audio_conf=model.audio_conf,
        manifest_filepath=hydra.utils.to_absolute_path(cfg.test_manifest),
        labels=model.labels,
        normalize=True)
    test_loader = AudioDataLoader(test_dataset,
                                  batch_size=cfg.batch_size,
                                  num_workers=cfg.num_workers)
    wer, cer, output_data = run_evaluation(test_loader=test_loader,
                                           device=device,
                                           model=model,
                                           decoder=decoder,
                                           target_decoder=target_decoder,
                                           save_output=cfg.save_output,
                                           verbose=cfg.verbose,
                                           use_half=cfg.model.use_half)

    print('Test Summary \t'
          'Average WER {wer:.3f}\t'
          'Average CER {cer:.3f}\t'.format(wer=wer, cer=cer))
    if cfg.save_output:
        torch.save(output_data, hydra.utils.to_absolute_path(cfg.save_output))
    def __init__(self, cfg):
        self.cfg = cfg

        self.device = torch.device(
            'cuda' if torch.cuda.is_available() else 'cpu')
        self.model = load_model(
            self.device, hydra.utils.to_absolute_path(self.cfg.model_path))
        self.ckpt = torch.load(hydra.utils.to_absolute_path(
            self.cfg.model_path),
                               map_location=self.device)
        self.labels = self.ckpt['hyper_parameters']['labels']

        self.decoder = BeamCTCDecoder(labels=self.labels,
                                      lm_path=hydra.utils.to_absolute_path(
                                          self.cfg.lm_path),
                                      beam_width=self.cfg.beam_width,
                                      num_processes=self.cfg.num_workers,
                                      blank_index=self.labels.index('_'))
        self.target_decoder = GreedyDecoder(labels=self.labels,
                                            blank_index=self.labels.index('_'))

        test_dataset = SpectrogramDataset(
            audio_conf=self.cfg.spect_cfg,
            input_path=hydra.utils.to_absolute_path(cfg.test_path),
            labels=self.labels,
            normalize=True)
        self.test_loader = AudioDataLoader(test_dataset,
                                           batch_size=self.cfg.batch_size,
                                           num_workers=self.cfg.num_workers)
Example #3
0
def evaluate(cfg: EvalConfig):
    device = torch.device("cuda" if cfg.model.cuda else "cpu")

    model = load_model(device=device, model_path=cfg.model.model_path)

    decoder = load_decoder(labels=model.labels, cfg=cfg.lm)
    target_decoder = GreedyDecoder(labels=model.labels,
                                   blank_index=model.labels.index('_'))
    test_dataset = SpectrogramDataset(audio_conf=model.spect_cfg,
                                      input_path=hydra.utils.to_absolute_path(
                                          cfg.test_path),
                                      labels=model.labels,
                                      normalize=True)
    test_loader = AudioDataLoader(test_dataset,
                                  batch_size=cfg.batch_size,
                                  num_workers=cfg.num_workers)
    wer, cer = run_evaluation_print(test_loader=test_loader,
                                    device=device,
                                    model=model,
                                    decoder=decoder,
                                    target_decoder=target_decoder,
                                    precision=cfg.model.precision)

    print('Test Summary \t'
          'Average WER {wer:.3f}\t'
          'Average CER {cer:.3f}\t'.format(wer=wer, cer=cer))
 def _create_dataset(self, input_path):
     dataset = SpectrogramDataset(audio_conf=self.spect_cfg,
                                  input_path=input_path,
                                  labels=self.labels,
                                  normalize=True,
                                  aug_cfg=self.aug_cfg)
     return dataset
    def eval_func(model, iterations=None, device=device):
        test_dataset = SpectrogramDataset(audio_conf=model.audio_conf,
                                          manifest_filepath=args.test_manifest,
                                          labels=model.labels,
                                          normalize=True)

        if iterations is not None:
            test_dataset.size = iterations

        test_loader = AudioDataLoader(test_dataset,
                                      batch_size=args.batch_size,
                                      num_workers=args.num_workers)

        wer, cer, output_data = run_evaluation(test_loader=test_loader,
                                               device=device,
                                               model=model,
                                               decoder=decoder,
                                               target_decoder=target_decoder,
                                               save_output=False,
                                               verbose=True,
                                               use_half=False)
        return wer, cer, output_data
Example #6
0
 def val_dataloader(self):
     val_dataset = SpectrogramDataset(
         manifest_filepath=self.val_path,
         labels=self.labels,
         validation=True,
     )
     val_loader = AudioDataLoader(
         dataset=val_dataset,
         num_workers=self.params.num_workers,
         batch_size=self.params.batch_size,
         shuffle=False,
         pin_memory=True
     )
     return val_loader
Example #7
0
    def train_dataloader(self):
        train_dataset = SpectrogramDataset(
            manifest_filepath=self.train_path,
            labels=self.labels,
            **vars(self.params)
        )

        train_loader = AudioDataLoader(
            dataset=train_dataset,
            num_workers=self.params.num_workers,
            batch_size=self.params.batch_size,
            shuffle=True,
            pin_memory=True
        )
        return train_loader
Example #8
0
        labels = json.load(label_file)

    decoder = load_decoder(decoder_type=args.decoder,
                           labels=labels,
                           lm_path=args.lm_path,
                           alpha=args.alpha,
                           beta=args.beta,
                           cutoff_top_n=args.cutoff_top_n,
                           cutoff_prob=args.cutoff_prob,
                           beam_width=args.beam_width,
                           lm_workers=args.lm_workers)

    target_decoder = GreedyDecoder(labels)

    test_dataset = SpectrogramDataset(audio_conf=model.audio_conf,
                                      manifest_filepath=args.test_manifest,
                                      labels=labels,
                                      normalize=True)

    test_loader = AudioDataLoader(test_dataset,
                                  batch_size=args.batch_size,
                                  num_workers=args.num_workers)

    wer, cer, output_data = evaluate(test_loader=test_loader,
                                     device=device,
                                     model=model,
                                     decoder=decoder,
                                     target_decoder=target_decoder,
                                     save_output=args.save_output,
                                     verbose=args.verbose,
                                     half=args.half)
def train(cfg):
    config = dict(
        epochs=cfg.training.epochs,
        batch_size=cfg.data.batch_size,
        learning_rate=cfg.optim.learning_rate,
        rnn_type=cfg.model.rnn_type,
        hidden_size=cfg.model.hidden_size,
        hidden_layers=cfg.model.hidden_layers,
        optimizer=cfg.optim,
        #   update_hessian=cfg.optim.update_each
    )
    wandb.init(project="adahessian-deepspeech", config=config)

    # Set seeds for determinism
    torch.manual_seed(cfg.training.seed)
    torch.cuda.manual_seed_all(cfg.training.seed)
    np.random.seed(cfg.training.seed)
    random.seed(cfg.training.seed)
    torch.backends.cudnn.flags(enabled=False)

    main_proc = True
    device = torch.device("cpu" if cfg.training.no_cuda else "cuda")

    is_distributed = os.environ.get(
        "LOCAL_RANK")  # If local rank exists, distributed env

    if is_distributed:
        # when using NCCL, on failures, surviving nodes will deadlock on NCCL ops
        # because NCCL uses a spin-lock on the device. Set this env var and
        # to enable a watchdog thread that will destroy stale NCCL communicators
        os.environ["NCCL_BLOCKING_WAIT"] = "1"

        device_id = int(os.environ["LOCAL_RANK"])
        torch.cuda.set_device(device_id)
        print(f"Setting CUDA Device to {device_id}")

        dist.init_process_group(backend=cfg.training.dist_backend.value)
        main_proc = device_id == 0  # Main process handles saving of models and reporting

    if OmegaConf.get_type(cfg.checkpointing) == FileCheckpointConfig:
        checkpoint_handler = FileCheckpointHandler(cfg=cfg.checkpointing)
    elif OmegaConf.get_type(cfg.checkpointing) == GCSCheckpointConfig:
        checkpoint_handler = GCSCheckpointHandler(cfg=cfg.checkpointing)
    else:
        raise ValueError("Checkpoint Config has not been specified correctly.")

    if main_proc and cfg.visualization.visdom:
        visdom_logger = VisdomLogger(id=cfg.visualization.id,
                                     num_epochs=cfg.training.epochs)
    if main_proc and cfg.visualization.tensorboard:
        tensorboard_logger = TensorBoardLogger(
            id=cfg.visualization.id,
            log_dir=to_absolute_path(cfg.visualization.log_dir),
            log_params=cfg.visualization.log_params)

    if cfg.checkpointing.load_auto_checkpoint:
        latest_checkpoint = checkpoint_handler.find_latest_checkpoint()
        if latest_checkpoint:
            cfg.checkpointing.continue_from = latest_checkpoint

    if cfg.checkpointing.continue_from:  # Starting from previous model
        state = TrainingState.load_state(
            state_path=to_absolute_path(cfg.checkpointing.continue_from))
        model = state.model
        if cfg.training.finetune:
            state.init_finetune_states(cfg.training.epochs)

        if main_proc and cfg.visualization.visdom:  # Add previous scores to visdom graph
            visdom_logger.load_previous_values(state.epoch, state.results)
        if main_proc and cfg.visualization.tensorboard:  # Previous scores to tensorboard logs
            tensorboard_logger.load_previous_values(state.epoch, state.results)
    else:
        # Initialise new model training
        with open(to_absolute_path(cfg.data.labels_path)) as label_file:
            labels = json.load(label_file)

        if OmegaConf.get_type(cfg.model) is BiDirectionalConfig:
            model = DeepSpeech(
                rnn_hidden_size=cfg.model.hidden_size,
                nb_layers=cfg.model.hidden_layers,
                labels=labels,
                rnn_type=supported_rnns[cfg.model.rnn_type.value],
                audio_conf=cfg.data.spect,
                bidirectional=True)
        elif OmegaConf.get_type(cfg.model) is UniDirectionalConfig:
            model = DeepSpeech(
                rnn_hidden_size=cfg.model.hidden_size,
                nb_layers=cfg.model.hidden_layers,
                labels=labels,
                rnn_type=supported_rnns[cfg.model.rnn_type.value],
                audio_conf=cfg.data.spect,
                bidirectional=False,
                context=cfg.model.lookahead_context)
        else:
            raise ValueError("Model Config has not been specified correctly.")

        state = TrainingState(model=model)
        state.init_results_tracking(epochs=cfg.training.epochs)

    # Data setup
    evaluation_decoder = GreedyDecoder(
        model.labels)  # Decoder used for validation
    train_dataset = SpectrogramDataset(audio_conf=model.audio_conf,
                                       manifest_filepath=to_absolute_path(
                                           cfg.data.train_manifest),
                                       labels=model.labels,
                                       normalize=True,
                                       augmentation_conf=cfg.data.augmentation)
    test_dataset = SpectrogramDataset(audio_conf=model.audio_conf,
                                      manifest_filepath=to_absolute_path(
                                          cfg.data.val_manifest),
                                      labels=model.labels,
                                      normalize=True)
    if not is_distributed:
        train_sampler = DSRandomSampler(dataset=train_dataset,
                                        batch_size=cfg.data.batch_size,
                                        start_index=state.training_step)
    else:
        train_sampler = DSElasticDistributedSampler(
            dataset=train_dataset,
            batch_size=cfg.data.batch_size,
            start_index=state.training_step)
    train_loader = AudioDataLoader(dataset=train_dataset,
                                   num_workers=cfg.data.num_workers,
                                   batch_sampler=train_sampler)
    test_loader = AudioDataLoader(dataset=test_dataset,
                                  num_workers=cfg.data.num_workers,
                                  batch_size=cfg.data.batch_size)

    model = model.to(device)
    parameters = model.parameters()
    if OmegaConf.get_type(cfg.optim) is SGDConfig:
        optimizer = torch.optim.SGD(parameters,
                                    lr=cfg.optim.learning_rate,
                                    momentum=cfg.optim.momentum,
                                    nesterov=True,
                                    weight_decay=cfg.optim.weight_decay)
    elif OmegaConf.get_type(cfg.optim) is AdamConfig:
        optimizer = torch.optim.AdamW(parameters,
                                      lr=cfg.optim.learning_rate,
                                      betas=cfg.optim.betas,
                                      eps=cfg.optim.eps,
                                      weight_decay=cfg.optim.weight_decay)
    elif OmegaConf.get_type(cfg.optim) is AdaHessianConfig:
        optimizer = AdaHessian(
            parameters,
            lr=cfg.optim.learning_rate,
            betas=cfg.optim.betas,
            eps=cfg.optim.eps,
            weight_decay=cfg.optim.weight_decay,
            update_each=cfg.optim.update_each,
            #    average_conv_kernel=cfg.optim.average_conv_kernel,
            # hessian_power=cfg.optim.hessian_power
        )
        torch.backends.cudnn.enabled = False

    else:
        raise ValueError("Optimizer has not been specified correctly.")
    if OmegaConf.get_type(cfg.optim) is not AdaHessianConfig:
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          enabled=not cfg.training.no_cuda,
                                          opt_level=cfg.apex.opt_level,
                                          loss_scale=cfg.apex.loss_scale)
    if state.optim_state is not None:
        optimizer.load_state_dict(state.optim_state)
    if state.amp_state is not None:
        amp.load_state_dict(state.amp_state)

    # Track states for optimizer/amp
    state.track_optim_state(optimizer)
    if not cfg.training.no_cuda and OmegaConf.get_type(
            cfg.optim) is not AdaHessianConfig:
        state.track_amp_state(amp)

    if is_distributed:
        model = DistributedDataParallel(model, device_ids=[device_id])
    print(model)
    print("Number of parameters: %d" % DeepSpeech.get_param_size(model))

    criterion = CTCLoss()
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()

    for epoch in range(state.epoch, cfg.training.epochs):
        model.train()
        end = time.time()
        start_epoch_time = time.time()
        state.set_epoch(epoch=epoch)
        train_sampler.set_epoch(epoch=epoch)
        train_sampler.reset_training_step(training_step=state.training_step)
        for i, (data) in enumerate(train_loader, start=state.training_step):
            state.set_training_step(training_step=i)
            inputs, targets, input_percentages, target_sizes = data
            input_sizes = input_percentages.mul_(int(inputs.size(3))).int()
            # measure data loading time
            data_time.update(time.time() - end)
            inputs = inputs.to(device)

            out, output_sizes = model(inputs, input_sizes)
            out = out.transpose(0, 1)  # TxNxH

            float_out = out.float()  # ensure float32 for loss
            loss = criterion(float_out, targets, output_sizes,
                             target_sizes).to(device)
            loss = loss / inputs.size(0)  # average the loss by minibatch
            loss_value = loss.item()

            # Check to ensure valid loss was calculated
            valid_loss, error = check_loss(loss, loss_value)
            if valid_loss:
                optimizer.zero_grad()

                # compute gradient
                if OmegaConf.get_type(cfg.optim) is AdaHessianConfig:
                    loss.backward(create_graph=True)
                else:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer),
                                               cfg.optim.max_norm)
                optimizer.step()
            else:
                print(error)
                print('Skipping grad update')
                loss_value = 0

            state.avg_loss += loss_value
            losses.update(loss_value, inputs.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
                      (epoch + 1), (i + 1),
                      len(train_loader),
                      batch_time=batch_time,
                      data_time=data_time,
                      loss=losses))

            if main_proc and cfg.checkpointing.checkpoint_per_iteration:
                checkpoint_handler.save_iter_checkpoint_model(epoch=epoch,
                                                              i=i,
                                                              state=state)
            del loss, out, float_out

        state.avg_loss /= len(train_dataset)

        epoch_time = time.time() - start_epoch_time
        print('Training Summary Epoch: [{0}]\t'
              'Time taken (s): {epoch_time:.0f}\t'
              'Average Loss {loss:.3f}\t'.format(epoch + 1,
                                                 epoch_time=epoch_time,
                                                 loss=state.avg_loss))

        with torch.no_grad():
            wer, cer, output_data = run_evaluation(
                test_loader=test_loader,
                device=device,
                model=model,
                decoder=evaluation_decoder,
                target_decoder=evaluation_decoder)

        state.add_results(epoch=epoch,
                          loss_result=state.avg_loss,
                          wer_result=wer,
                          cer_result=cer)

        print('Validation Summary Epoch: [{0}]\t'
              'Average WER {wer:.3f}\t'
              'Average CER {cer:.3f}\t'.format(epoch + 1, wer=wer, cer=cer))

        if main_proc and cfg.visualization.visdom:
            visdom_logger.update(epoch, state.result_state)
        if main_proc and cfg.visualization.tensorboard:
            tensorboard_logger.update(epoch, state.result_state,
                                      model.named_parameters())
        if main_proc and cfg.visualization.wandb:
            wandb.log({
                'epoch': epoch,
                'Average Loss': state.avg_loss,
                'Average WER': wer,
                'Average CER': cer
            })

        if main_proc and cfg.checkpointing.checkpoint:  # Save epoch checkpoint
            checkpoint_handler.save_checkpoint_model(epoch=epoch, state=state)
        # anneal lr
        for g in optimizer.param_groups:
            g['lr'] = g['lr'] / cfg.optim.learning_anneal
        print('Learning rate annealed to: {lr:.6f}'.format(lr=g['lr']))
        wandb.log({"lr": g['lr']})

        if main_proc and (state.best_wer is None or state.best_wer > wer):
            checkpoint_handler.save_best_model(epoch=epoch, state=state)
            state.set_best_wer(wer)
            state.reset_avg_loss()
        state.reset_training_step()  # Reset training step for next epoch
Example #10
0
def train(cfg):
    # Set seeds for determinism
    torch.manual_seed(cfg.training.seed)
    torch.cuda.manual_seed_all(cfg.training.seed)
    np.random.seed(cfg.training.seed)
    random.seed(cfg.training.seed)

    main_proc = True
    device = torch.device("cpu" if cfg.training.no_cuda else "cuda")

    is_distributed = os.environ.get(
        "LOCAL_RANK")  # If local rank exists, distributed env

    if is_distributed:
        # when using NCCL, on failures, surviving nodes will deadlock on NCCL ops
        # because NCCL uses a spin-lock on the device. Set this env var and
        # to enable a watchdog thread that will destroy stale NCCL communicators
        os.environ["NCCL_BLOCKING_WAIT"] = "1"

        device_id = int(os.environ["LOCAL_RANK"])
        torch.cuda.set_device(device_id)
        print(f"Setting CUDA Device to {device_id}")

        dist.init_process_group(backend=cfg.training.dist_backend.value)
        main_proc = device_id == 0  # Main process handles saving of models and reporting

    if OmegaConf.get_type(cfg.checkpointing) == FileCheckpointConfig:
        checkpoint_handler = FileCheckpointHandler(cfg=cfg.checkpointing)
    elif OmegaConf.get_type(cfg.checkpointing) == GCSCheckpointConfig:
        checkpoint_handler = GCSCheckpointHandler(cfg=cfg.checkpointing)
    else:
        raise ValueError("Checkpoint Config has not been specified correctly.")

    if main_proc and cfg.visualization.visdom:
        visdom_logger = VisdomLogger(id=cfg.visualization.id,
                                     num_epochs=cfg.training.epochs)
    if main_proc and cfg.visualization.tensorboard:
        tensorboard_logger = TensorBoardLogger(
            id=cfg.visualization.id,
            log_dir=to_absolute_path(cfg.visualization.log_dir),
            log_params=cfg.visualization.log_params)

    if cfg.checkpointing.load_auto_checkpoint:
        latest_checkpoint = checkpoint_handler.find_latest_checkpoint()
        if latest_checkpoint:
            cfg.checkpointing.continue_from = latest_checkpoint

    if cfg.checkpointing.continue_from:  # Starting from previous model
        state = TrainingState.load_state(
            state_path=to_absolute_path(cfg.checkpointing.continue_from))
        model = state.model
        if cfg.training.finetune:
            state.init_finetune_states(cfg.training.epochs)

        if main_proc and cfg.visualization.visdom:  # Add previous scores to visdom graph
            visdom_logger.load_previous_values(state.epoch, state.results)
        if main_proc and cfg.visualization.tensorboard:  # Previous scores to tensorboard logs
            tensorboard_logger.load_previous_values(state.epoch, state.results)
    else:
        # Initialise new model training
        with open(to_absolute_path(cfg.data.labels_path)) as label_file:
            labels = json.load(label_file)

# #cấu hình của model trong file train_config.py dòng 51
# @dataclass
# class BiDirectionalConfig:
#     rnn_type: RNNType = RNNType.lstm  # Type of RNN to use in model
#     hidden_size: int = 1024  # Hidden size of RNN Layer
#     hidden_layers: int = 7  # Number of RNN layers
        if OmegaConf.get_type(cfg.model) is BiDirectionalConfig:
            model = DeepSpeech(
                rnn_hidden_size=cfg.model.hidden_size,
                nb_layers=cfg.model.hidden_layers,
                labels=labels,
                rnn_type=supported_rnns[cfg.model.rnn_type.value],
                audio_conf=cfg.data.spect,
                bidirectional=True)
        elif OmegaConf.get_type(cfg.model) is UniDirectionalConfig:
            model = DeepSpeech(
                rnn_hidden_size=cfg.model.hidden_size,
                nb_layers=cfg.model.hidden_layers,
                labels=labels,
                rnn_type=supported_rnns[cfg.model.rnn_type.value],
                audio_conf=cfg.data.spect,
                bidirectional=False,
                context=cfg.model.lookahead_context)
        else:
            raise ValueError("Model Config has not been specified correctly.")

        state = TrainingState(model=model)
        state.init_results_tracking(epochs=cfg.training.epochs)

    # Data setup
    evaluation_decoder = GreedyDecoder(
        model.labels)  # Decoder used for validation
    train_dataset = SpectrogramDataset(
        audio_conf=model.audio_conf,
        manifest_filepath=to_absolute_path(cfg.data.train_manifest),
        labels=model.labels,
        normalize=True,
        augmentation_conf=cfg.data.augmentation
    )  #cấu hình spect, ids=[[dòng 1],[dognf 2]..], lables_=dict
    test_dataset = SpectrogramDataset(audio_conf=model.audio_conf,
                                      manifest_filepath=to_absolute_path(
                                          cfg.data.val_manifest),
                                      labels=model.labels,
                                      normalize=True)
    if not is_distributed:
        train_sampler = DSRandomSampler(
            dataset=train_dataset,
            batch_size=cfg.data.batch_size,
            start_index=state.training_step
        )  #DSRandomSampler để  chọn 1 bộ minibatch bất kì và xáo trộn nội dung trong minibatch
    else:
        train_sampler = DSElasticDistributedSampler(
            dataset=train_dataset,
            batch_size=cfg.data.batch_size,
            start_index=state.training_step)
    train_loader = AudioDataLoader(
        dataset=train_dataset,
        num_workers=cfg.data.num_workers,
        batch_sampler=train_sampler
    )  #AudioLoader có hàm collate_fn để xử lí 1 minibatch được chọn, trả ra cuối cùng là mảng có 835 phần tử(đối với FPT, VIVOS), mỗi phần tử của audio loader là 1 mảng gồm batch_size mẫu
    test_loader = AudioDataLoader(dataset=test_dataset,
                                  num_workers=cfg.data.num_workers,
                                  batch_size=cfg.data.batch_size)

    model = model.to(device)
    parameters = model.parameters()
    if OmegaConf.get_type(
            cfg.optim) is SGDConfig:  #mặc định ở dòng 8 trong train_config
        optimizer = torch.optim.SGD(parameters,
                                    lr=cfg.optim.learning_rate,
                                    momentum=cfg.optim.momentum,
                                    nesterov=True,
                                    weight_decay=cfg.optim.weight_decay)
    elif OmegaConf.get_type(cfg.optim) is AdamConfig:
        optimizer = torch.optim.AdamW(parameters,
                                      lr=cfg.optim.learning_rate,
                                      betas=cfg.optim.betas,
                                      eps=cfg.optim.eps,
                                      weight_decay=cfg.optim.weight_decay)
    else:
        raise ValueError("Optimizer has not been specified correctly.")

    model, optimizer = amp.initialize(model,
                                      optimizer,
                                      enabled=not cfg.training.no_cuda,
                                      opt_level=cfg.apex.opt_level,
                                      loss_scale=cfg.apex.loss_scale)
    if state.optim_state is not None:
        optimizer.load_state_dict(state.optim_state)
    if state.amp_state is not None:
        amp.load_state_dict(state.amp_state)

    # Track states for optimizer/amp
    state.track_optim_state(optimizer)
    if not cfg.training.no_cuda:
        state.track_amp_state(amp)

    if is_distributed:
        model = DistributedDataParallel(model, device_ids=[device_id])
    #print(model)
    print("Number of parameters: %d" % DeepSpeech.get_param_size(model))

    criterion = CTCLoss()
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()

    for epoch in range(
            state.epoch,
            cfg.training.epochs):  #1 epoch là duyệt hết cả csv của train
        model.train()
        end = time.time()
        start_epoch_time = time.time()
        state.set_epoch(epoch=epoch)
        train_sampler.set_epoch(epoch=epoch)
        train_sampler.reset_training_step(training_step=state.training_step)
        for i, (data) in enumerate(train_loader, start=state.training_step
                                   ):  #duyệt qua từng minibatch (gồm 32 mẫu)
            state.set_training_step(training_step=i)
            inputs, targets, input_percentages, target_sizes = data  #inputs[x][0] chứ spect thứ x trong batchsixe, input_percenttages: tỉ lệ độ dài câu từng câu nói trong minibatch/độ dài max, target: array [[...mã ascii]]
            input_sizes = input_percentages.mul_(int(inputs.size(3))).int(
            )  #tensor([699, 682, 656, 560, 553, 517, 514, 502, 464, 458, 423, 412, 406, 349, ...] laayss tỉ lệ X độ dài max để ra độ dài thực sự từng câu nói
            # measure data loading time
            data_time.update(time.time() - end)
            inputs = inputs.to(device)
            #đưa inputs gồm 32 mẫu qua mô hình học sâu, và kích thước thực sự từng câu nói (độ dài bước thời gian phổ)
            out, output_sizes = model(
                inputs, input_sizes
            )  #như out: 3 chiều, outputsize: 1 chiều : chứa kích thước mô hình dự đoán cho văn bản kq
            out = out.transpose(
                0, 1
            )  # TxNxH sau khi tranpose : out 3 chiều (bị đổi chiều 0 và 1)=> out (190x3x93)

            float_out = out.float()  # ensure float32 for loss
            loss = criterion(float_out, targets, output_sizes,
                             target_sizes).to(device)
            loss = loss / inputs.size(
                0
            )  # average the loss by minibatch, tổng loss chia cho số spect trong batch đó
            loss_value = loss.item()

            # Check to ensure valid loss was calculated
            valid_loss, error = check_loss(loss, loss_value)
            if valid_loss:
                optimizer.zero_grad()

                # compute gradient, SGD chuẩn hóa SGD cập nhật trọng số
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer),
                                               cfg.optim.max_norm)
                optimizer.step()
            else:
                print(error)
                print('Skipping grad update')
                loss_value = 0

            state.avg_loss += loss_value
            losses.update(loss_value, inputs.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
                      (epoch + 1), (i + 1),
                      len(train_loader),
                      batch_time=batch_time,
                      data_time=data_time,
                      loss=losses))
            if main_proc and cfg.checkpointing.checkpoint_per_iteration:
                checkpoint_handler.save_iter_checkpoint_model(epoch=epoch,
                                                              i=i,
                                                              state=state)
            del loss, out, float_out

        state.avg_loss /= len(train_dataset)

        epoch_time = time.time() - start_epoch_time
        print('Training Summary Epoch: [{0}]\t'
              'Time taken (s): {epoch_time:.0f}\t'
              'Average Loss {loss:.3f}\t'.format(epoch + 1,
                                                 epoch_time=epoch_time,
                                                 loss=state.avg_loss))
        mylogg2er.info('Training Summary Epoch: [{0}]\t'
                       'Time taken (s): {epoch_time:.0f}\t'
                       'Average Loss {loss:.3f}\n'.format(
                           epoch + 1,
                           epoch_time=epoch_time,
                           loss=state.avg_loss))
        file_object = open('/root/epoch.log', 'a')
        file_object.write('Training Summary Epoch: [{0}]\t'
                          'Time taken (s): {epoch_time:.0f}\t'
                          'Average Loss {loss:.3f}\n'.format(
                              epoch + 1,
                              epoch_time=epoch_time,
                              loss=state.avg_loss))
        file_object.close()
        with torch.no_grad():
            wer, cer, output_data, wer2, cer2 = run_evaluation(
                test_loader=test_loader,
                device=device,
                model=model,
                decoder=evaluation_decoder,
                target_decoder=evaluation_decoder)

        state.add_results(epoch=epoch,
                          loss_result=state.avg_loss,
                          wer_result=wer,
                          cer_result=cer)

        print('Validation Summary Epoch: [{0}]\t'
              'Average WER {wer:.3f}\t'
              'Average CER {cer:.3f}\t'.format(epoch + 1, wer=wer, cer=cer))
        # mylogg2er.info('Validation Summary Epoch: [{0}]\t'
        #       'Average WER {wer:.3f}\t'
        #       'Average CER {cer:.3f}\t'.format(epoch + 1, wer=wer, cer=cer))
        file_object = open('/root/epoch.log', 'a')
        file_object.write('Validation Summary Epoch: [{0}]\t'
                          'Average WER {wer:.3f}\t'
                          'Average CER {cer:.3f}\t'.format(epoch + 1,
                                                           wer=wer,
                                                           cer=cer))
        file_object.write('Validation Summary Epoch: [{0}]\t'
                          'Average WER2 {wer:.3f}\t'
                          'Average CER2 {cer:.3f}\n'.format(epoch + 1,
                                                            wer=wer2,
                                                            cer=cer2))
        file_object.close()
        if main_proc and cfg.visualization.visdom:
            visdom_logger.update(epoch, state.result_state)
        if main_proc and cfg.visualization.tensorboard:
            tensorboard_logger.update(epoch, state.result_state,
                                      model.named_parameters())

        if main_proc and cfg.checkpointing.checkpoint:  # Save epoch checkpoint
            checkpoint_handler.save_checkpoint_model(epoch=epoch, state=state)
        # anneal lr
        for g in optimizer.param_groups:
            g['lr'] = g['lr'] / cfg.optim.learning_anneal
        print('Learning rate annealed to: {lr:.6f}'.format(lr=g['lr']))
        file_object = open('/root/epoch.log', 'a')
        file_object.write(
            'Learning rate annealed to: {lr:.6f}\n'.format(lr=g['lr']))
        file_object.close()
        try:
            #  print('Training Summary Epoch: [{0}]\t'
            #   'Time taken (s): {epoch_time:.0f}\t'
            #   'Average Loss {loss:.3f}\t'.format(epoch + 1, epoch_time=epoch_time, loss=state.avg_loss))/////////
            note = "Đổi tham số train_config: type: rnn.gru epochs: int = 50, batch_size: int = 30, hidden_size: int = 1600, hidden_layers: int = 7, file train_manifest: vinfptunk_train.csv, vinfptunk_dev.csv",
            sendReport(epoch + 1, '{:.3f}'.format(epoch_time),
                       '{:.3f}'.format(state.avg_loss), '{:.3f}'.format(wer),
                       '{:.3f}'.format(cer), "{:.6f}".format(g['lr']), note)
        except Exception as esss:
            print('Error :', esss)
        if main_proc and (state.best_wer is None or state.best_wer > wer):
            checkpoint_handler.save_best_model(epoch=epoch, state=state)
            state.set_best_wer(wer)
            state.reset_avg_loss()
        state.reset_training_step()  # Reset training step for next epoch
Example #11
0

def normalize_tensor(x):
   return x / x.sum()



if __name__ == '__main__':
    LABELS = ["_", "'", "A", "B", "C", "D", "E", "F", "G",
              "H", "I", "J", "K", "L", "M", "N", "O", "P",
              "Q", "R", "S", "T", "U", "V", "W", "X", "Y",
              "Z", " "
              ]

    path_input = '/home/coml/Documents/Victoria/noise_classifier/deepspeech_model/data/CommonVoice_dataset/train'
    test_dataset = SpectrogramDataset(audio_conf=SpectConfig(), input_path=path_input, labels=LABELS)
    test_loader = AudioDataLoader(dataset=test_dataset)
    model = DeepSpeech(labels=LABELS, precision=32, spect_cfg=SpectConfig(),
                       optim_cfg=AdamConfig(), model_cfg=BiDirectionalConfig()) # args: 'labels', 'model_cfg', 'precision', 'optim_cfg', and 'spect_cfg'
    # im = test_loader[0]

    NUM_CLASSES = 29 # Corresponds to the length of the labels
    # layer = nn.Linear()

    for i, data in enumerate(test_loader, 0):
        # print('DATA \n',  data[1], '\n', data[2], '\n', data[3], '\n')
        print('\n Sample {}: input length {}'.format(i, data[3]))
        out, length = model.forward(data[0], data[3])
        print('   Outputs shapes: {} {}'.format(out.shape, length))
        print('Final output', out)
Example #12
0
def representations_extractor(
        layer: str,
        # dataset_name: str,
        # destination_path: str,
        # checkpoint: str,
        device: str,
        cfg: DeepSpeechConfig):
    seed_everything(cfg.seed)

    # Load the Labels (USELESS UP TO NOW)
    with open(to_absolute_path(cfg.data.labels_path)) as label_file:
        labels = json.load(label_file)
    print('Loaded Labels', labels)

    # Load the checkpoint
    if cfg.trainer.checkpoint_callback:
        if OmegaConf.get_type(cfg.checkpoint) is GCSCheckpointConfig:
            checkpoint_callback = GCSCheckpointHandler(cfg=cfg.checkpoint)
        else:
            checkpoint_callback = FileCheckpointHandler(cfg=cfg.checkpoint)
        if cfg.load_auto_checkpoint:
            resume_from_checkpoint = checkpoint_callback.find_latest_checkpoint(
            )
            if resume_from_checkpoint:
                cfg.trainer.resume_from_checkpoint = resume_from_checkpoint

    # Define the dataloader
    print('Load the Dataset ...')
    dataset = SpectrogramDataset(audio_conf=cfg.data.spect,
                                 input_path=to_absolute_path(
                                     cfg.data.train_path),
                                 labels=labels,
                                 normalize=True,
                                 aug_cfg=cfg.data.augmentation)
    is_distributed = False
    if is_distributed:
        sampler = DSElasticDistributedSampler(dataset=dataset, batch_size=1)
    else:
        sampler = DSRandomSampler(dataset=dataset, batch_size=1)
    loader = AudioDataLoader(dataset=dataset,
                             shuffle=False,
                             num_workers=cfg.data.num_workers,
                             batch_sampler=sampler)

    # Load the model
    model = DeepSpeech(labels=labels,
                       model_cfg=cfg.model,
                       optim_cfg=cfg.optim,
                       precision=cfg.trainer.precision,
                       spect_cfg=cfg.data.spect)
    # model.load_state_dict(torch.load(checkpoint))

    # Compute intermediate representations
    for i, batch in enumerate(loader, 0):

        with torch.no_grad():
            inputs, targets, input_percentages, target_sizes = batch
            input_sizes = input_percentages.mul_(int(inputs.size(3))).int()
            # device = torch.cuda.device(device)
            # inputs = inputs.to(device)
            out, output_sizes = model.intermediate_forward(
                inputs, input_sizes, layer)

            if i == 0:
                print('Layer {} output shape: {}'.format(layer, out.shape))

            # Reshape the outputs
            new_outputs = reshape_outputs(out, layer)

            # Save the representations
            dataset_name = 'freesound_train_curated'
            destination_path = '/scratch2/vbrami/deepspeech_extractions/freesound_outputs'
            save_outputs(new_outputs, layer, i, destination_path, dataset_name)

    return None
Example #13
0
def train(cfg):

    # 결과를 저장하기 위한 txt파일 초기화
    with open(
            "/home/jhjeong/jiho_deep/deepspeech.pytorch/jiho_result/result.txt",
            "w") as ff:
        ff.write("학습 시작! \n")

    # Set seeds for determinism
    torch.manual_seed(cfg.training.seed)
    torch.cuda.manual_seed_all(cfg.training.seed)
    np.random.seed(cfg.training.seed)
    random.seed(cfg.training.seed)

    main_proc = True
    device = torch.device("cpu" if cfg.training.no_cuda else "cuda")

    is_distributed = os.environ.get(
        "LOCAL_RANK")  # If local rank exists, distributed env

    if is_distributed:
        # when using NCCL, on failures, surviving nodes will deadlock on NCCL ops
        # because NCCL uses a spin-lock on the device. Set this env var and
        # to enable a watchdog thread that will destroy stale NCCL communicators
        os.environ["NCCL_BLOCKING_WAIT"] = "1"

        device_id = int(os.environ["LOCAL_RANK"])
        torch.cuda.set_device(device_id)
        print(f"Setting CUDA Device to {device_id}")

        dist.init_process_group(backend=cfg.training.dist_backend)
        main_proc = device_id == 0  # Main process handles saving of models and reporting

    checkpoint_handler = CheckpointHandler(
        save_folder=to_absolute_path(cfg.checkpointing.save_folder),
        best_val_model_name=cfg.checkpointing.best_val_model_name,
        checkpoint_per_iteration=cfg.checkpointing.checkpoint_per_iteration,
        save_n_recent_models=cfg.checkpointing.save_n_recent_models)

    #visdom 사용할건지 tensorboard 사용할건지
    if main_proc and cfg.visualization.visdom:
        visdom_logger = VisdomLogger(id=cfg.visualization.id,
                                     num_epochs=cfg.training.epochs)
    if main_proc and cfg.visualization.tensorboard:
        tensorboard_logger = TensorBoardLogger(
            id=cfg.visualization.id,
            log_dir=to_absolute_path(cfg.visualization.log_dir),
            log_params=cfg.visualization.log_params)

    if cfg.checkpointing.load_auto_checkpoint:
        latest_checkpoint = checkpoint_handler.find_latest_checkpoint()
        if latest_checkpoint:
            cfg.checkpointing.continue_from = latest_checkpoint

    # 여기서 부터
    if cfg.checkpointing.continue_from:  # Starting from previous model
        state = TrainingState.load_state(
            state_path=to_absolute_path(cfg.checkpointing.continue_from))
        model = state.model
        if cfg.training.finetune:
            state.init_finetune_states(cfg.training.epochs)

        if main_proc and cfg.visualization.visdom:  # Add previous scores to visdom graph
            visdom_logger.load_previous_values(state.epoch, state.results)
        if main_proc and cfg.visualization.tensorboard:  # Previous scores to tensorboard logs
            tensorboard_logger.load_previous_values(state.epoch, state.results)
    else:
        # Initialise new model training
        with open(to_absolute_path(cfg.data.labels_path)) as label_file:
            labels = json.load(label_file)  # label(a,b,c ...)

        audio_conf = dict(sample_rate=cfg.data.sample_rate,
                          window_size=cfg.data.window_size,
                          window_stride=cfg.data.window_stride,
                          window=cfg.data.window)
        if cfg.augmentation.noise_dir:
            audio_conf += dict(noise_dir=to_absolute_path(
                cfg.augmentation.noise_dir),
                               noise_prob=cfg.augmentation.noise_prob,
                               noise_levels=(cfg.augmentation.noise_min,
                                             cfg.augmentation.noise_max))

        rnn_type = cfg.model.rnn_type.lower()
        assert rnn_type in supported_rnns, "rnn_type should be either lstm, rnn or gru"

        # DeepSpeech 모델을 생성
        model = DeepSpeech(rnn_hidden_size=cfg.model.hidden_size,
                           nb_layers=cfg.model.hidden_layers,
                           labels=labels,
                           rnn_type=supported_rnns[rnn_type],
                           audio_conf=audio_conf,
                           bidirectional=cfg.model.bidirectional)

        state = TrainingState(model=model)
        state.init_results_tracking(epochs=cfg.training.epochs)

    # Data setup
    evaluation_decoder = GreedyDecoder(
        model.labels)  # Decoder used for validation

    # Data path 정리
    train_dataset = SpectrogramDataset(
        audio_conf=model.audio_conf,
        manifest_filepath=to_absolute_path(cfg.data.train_manifest),
        labels=model.labels,
        normalize=True,
        speed_volume_perturb=cfg.augmentation.speed_volume_perturb,
        spec_augment=cfg.augmentation.spec_augment)

    test_dataset = SpectrogramDataset(audio_conf=model.audio_conf,
                                      manifest_filepath=to_absolute_path(
                                          cfg.data.val_manifest),
                                      labels=model.labels,
                                      normalize=True,
                                      speed_volume_perturb=False,
                                      spec_augment=False)

    if not is_distributed:
        train_sampler = DSRandomSampler(dataset=train_dataset,
                                        batch_size=cfg.data.batch_size,
                                        start_index=state.training_step)
    else:
        train_sampler = DSElasticDistributedSampler(
            dataset=train_dataset,
            batch_size=cfg.data.batch_size,
            start_index=state.training_step)

    # data load 하는 부분
    train_loader = AudioDataLoader(dataset=train_dataset,
                                   num_workers=cfg.data.num_workers,
                                   batch_sampler=train_sampler)
    test_loader = AudioDataLoader(dataset=test_dataset,
                                  num_workers=cfg.data.num_workers,
                                  batch_size=cfg.data.batch_size)

    model = model.to(device)
    parameters = model.parameters()

    if cfg.optimizer.adam:
        optimizer = torch.optim.AdamW(parameters,
                                      lr=cfg.optimizer.learning_rate,
                                      betas=cfg.optimizer.betas,
                                      eps=cfg.optimizer.eps,
                                      weight_decay=cfg.optimizer.weight_decay)
    else:
        optimizer = torch.optim.SGD(parameters,
                                    lr=cfg.optimizer.learning_rate,
                                    momentum=cfg.optimizer.momentum,
                                    nesterov=True,
                                    weight_decay=cfg.optimizer.weight_decay)

    model, optimizer = amp.initialize(model,
                                      optimizer,
                                      opt_level=cfg.apex.opt_level,
                                      loss_scale=cfg.apex.loss_scale)

    if state.optim_state is not None:
        optimizer.load_state_dict(state.optim_state)
        amp.load_state_dict(state.amp_state)

    # Track states for optimizer/amp
    state.track_optim_state(optimizer)
    state.track_amp_state(amp)

    if is_distributed:
        model = DistributedDataParallel(model, device_ids=[device_id])

    print(model)
    print("Number of parameters: %d" % DeepSpeech.get_param_size(model))

    criterion = CTCLoss()
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()

    for epoch in range(state.epoch, cfg.training.epochs):
        model.train()
        end = time.time()
        start_epoch_time = time.time()
        state.set_epoch(epoch=epoch)
        train_sampler.set_epoch(epoch=epoch)
        train_sampler.reset_training_step(training_step=state.training_step)

        #train data있는거 가져다 사용하겠다.
        for i, (data) in enumerate(train_loader, start=state.training_step):
            state.set_training_step(training_step=i)
            inputs, targets, input_percentages, target_sizes = data
            input_sizes = input_percentages.mul_(int(inputs.size(3))).int()

            # measure data loading time
            data_time.update(time.time() - end)
            inputs = inputs.to(device)

            out, output_sizes = model(inputs, input_sizes)
            out = out.transpose(0, 1)  # TxNxH

            float_out = out.float()  # ensure float32 for loss
            loss = criterion(float_out, targets, output_sizes,
                             target_sizes).to(device)
            loss = loss / inputs.size(0)  # average the loss by minibatch
            loss_value = loss.item()

            # Check to ensure valid loss was calculated
            valid_loss, error = check_loss(loss, loss_value)
            if valid_loss:
                optimizer.zero_grad()

                # compute gradient
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer),
                                               cfg.optimizer.max_norm)
                optimizer.step()
            else:
                print(error)
                print('Skipping grad update')
                loss_value = 0

            state.avg_loss += loss_value
            losses.update(loss_value, inputs.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
                      (epoch + 1), (i + 1),
                      len(train_loader),
                      batch_time=batch_time,
                      data_time=data_time,
                      loss=losses))

            if main_proc and cfg.checkpointing.checkpoint_per_iteration:
                checkpoint_handler.save_iter_checkpoint_model(epoch=epoch,
                                                              i=i,
                                                              state=state)
            del loss, out, float_out

        state.avg_loss /= len(train_dataset)

        epoch_time = time.time() - start_epoch_time
        print('Training Summary Epoch: [{0}]\t'
              'Time taken (s): {epoch_time:.0f}\t'
              'Average Loss {loss:.3f}\t'.format(epoch + 1,
                                                 epoch_time=epoch_time,
                                                 loss=state.avg_loss))

        with open(
                "/home/jhjeong/jiho_deep/deepspeech.pytorch/jiho_result/result.txt",
                "a") as ff:
            ff.write("\n")
            ff.write("train -> ")
            ff.write("epoch : ")
            ff.write(str(epoch + 1))
            ff.write(" loss : ")
            ff.write(str(state.avg_loss))
            ff.write("\n")

        with torch.no_grad():
            wer, cer, output_data = evaluate(test_loader=test_loader,
                                             device=device,
                                             model=model,
                                             decoder=evaluation_decoder,
                                             target_decoder=evaluation_decoder)

        state.add_results(epoch=epoch,
                          loss_result=state.avg_loss,
                          wer_result=wer,
                          cer_result=cer)

        print('Validation Summary Epoch: [{0}]\t'
              'Average CER {cer:.3f}\t'.format(epoch + 1, cer=cer))

        with open(
                "/home/jhjeong/jiho_deep/deepspeech.pytorch/jiho_result/result.txt",
                "a") as ff:
            ff.write("\n")
            ff.write("val -> ")
            ff.write("epoch : ")
            ff.write(str(epoch + 1))
            ff.write(" cer : ")
            ff.write(str(cer))
            ff.write("\n")

        # 텐서보드에 업데이트함
        if main_proc and cfg.visualization.visdom:
            visdom_logger.update(epoch, state.result_state)
        if main_proc and cfg.visualization.tensorboard:
            tensorboard_logger.update(epoch, state.result_state,
                                      model.named_parameters())

        if main_proc and cfg.checkpointing.checkpoint:  # Save epoch checkpoint
            checkpoint_handler.save_checkpoint_model(epoch=epoch, state=state)
        # anneal lr
        for g in optimizer.param_groups:
            g['lr'] = g['lr'] / cfg.optimizer.learning_anneal
        print('Learning rate annealed to: {lr:.6f}'.format(lr=g['lr']))

        if main_proc and (state.best_wer is None or state.best_wer > wer):
            checkpoint_handler.save_best_model(epoch=epoch, state=state)
            state.set_best_wer(wer)
            state.reset_avg_loss()
        state.reset_training_step()  # Reset training step for next epoch