def log_likelihood_biased(self, count_matrix, transition_matrix): """ Evaluate AMM likelihood. """ ll_unbiased = msmest.log_likelihood(count_matrix, transition_matrix) ll_bias = -np.sum(self.experimental_measurement_weights * (self.m_hat - self.experimental_measurements) ** 2.) return ll_unbiased + ll_bias
def _log_likelihood_biased(C, T, E, mhat, ws): """ Evaluate AMM likelihood. """ ll_unbiased = log_likelihood(C, T) ll_bias = -_np.sum(ws * (mhat - E)**2.) return ll_unbiased + ll_bias
def test_count_matrix(self): """Small test cases""" log = log_likelihood(self.C1, self.T1) assert_allclose(log, np.log(0.8 * 0.2**3 * 0.9**3 * 0.1))