Example #1
0
def process(args):

    if args.format == "adjlist":
        G = graph.load_adjacencylist(args.input, undirected=args.undirected)
    elif args.format == "edgelist":
        G = graph.load_edgelist(args.input, undirected=args.undirected)
    elif args.format == "mat":
        G = graph.load_matfile(
            args.input, variable_name=args.matfile_variable_name, undirected=args.undirected)
    else:
        raise Exception(
            "Unknown file format: '%s'.  Valid formats: 'adjlist', 'edgelist', 'mat'" % args.format)

    print("Number of nodes: {}".format(len(G.nodes())))

    num_walks = len(G.nodes()) * args.number_walks

    print("Number of walks: {}".format(num_walks))

    data_size = num_walks * args.walk_length

    print("Data size (walks*length): {}".format(data_size))

    if data_size < args.max_memory_data_size:
        print("Walking...")
        walks = graph.build_deepwalk_corpus(G, num_paths=args.number_walks,
                                            path_length=args.walk_length, alpha=0, rand=random.Random(args.seed))
        print("Training...")
        model = Word2Vec(walks, size=args.representation_size,
                         window=args.window_size, min_count=0, workers=args.workers)
    else:
        print("Data size {} is larger than limit (max-memory-data-size: {}).  Dumping walks to disk.".format(
            data_size, args.max_memory_data_size))
        print("Walking...")

        walks_filebase = args.output + ".walks"
        walk_files = serialized_walks.write_walks_to_disk(G, walks_filebase, num_paths=args.number_walks,
                                                          path_length=args.walk_length, alpha=0, rand=random.Random(args.seed),
                                                          num_workers=args.workers)

        print("Counting vertex frequency...")
        if not args.vertex_freq_degree:
            vertex_counts = serialized_walks.count_textfiles(
                walk_files, args.workers)
        else:
            # use degree distribution for frequency in tree
            vertex_counts = G.degree(nodes=G.iterkeys())

        print("Training...")
        model = Skipgram(sentences=serialized_walks.combine_files_iter(walk_files), vocabulary_counts=vertex_counts,
                         size=args.representation_size,
                         window=args.window_size, min_count=0, workers=args.workers)

    model.save_word2vec_format(args.output)
Example #2
0
def process(args):

  if args.format == "adjlist":
    G = graph.load_adjacencylist(args.input, undirected=args.undirected)
  elif args.format == "edgelist":
    G = graph.load_edgelist(args.input, undirected=args.undirected)
  elif args.format == "mat":
    G = graph.load_matfile(args.input, variable_name=args.matfile_variable_name, undirected=args.undirected)
  else:
    raise Exception("Unknown file format: '%s'.  Valid formats: 'adjlist', 'edgelist', 'mat'" % args.format)

  print("Number of nodes: {}".format(len(G.nodes())))

  num_walks = len(G.nodes()) * args.number_walks

  print("Number of walks: {}".format(num_walks))

  data_size = num_walks * args.walk_length

  print("Data size (walks*length): {}".format(data_size))

  if data_size < args.max_memory_data_size:
    print("Walking...")
    walks = graph.build_deepwalk_corpus(G, num_paths=args.number_walks,
                                        path_length=args.walk_length, alpha=0, rand=random.Random(args.seed))
    print("Training...")
    model = Word2Vec(walks, size=args.representation_size, window=args.window_size, min_count=0, workers=args.workers)
  else:
    print("Data size {} is larger than limit (max-memory-data-size: {}).  Dumping walks to disk.".format(data_size, args.max_memory_data_size))
    print("Walking...")

    walks_filebase = args.output + ".walks"
    walk_files = serialized_walks.write_walks_to_disk(G, walks_filebase, num_paths=args.number_walks,
                                         path_length=args.walk_length, alpha=0, rand=random.Random(args.seed),
                                         num_workers=args.workers)

    print("Counting vertex frequency...")
    if not args.vertex_freq_degree:
      vertex_counts = serialized_walks.count_textfiles(walk_files, args.workers)
    else:
      # use degree distribution for frequency in tree
      vertex_counts = G.degree(nodes=G.iterkeys())

    print("Training...")
    model = Skipgram(sentences=serialized_walks.combine_files_iter(walk_files), vocabulary_counts=vertex_counts,
                     size=args.representation_size,
                     window=args.window_size, min_count=0, workers=args.workers)

  model.save_word2vec_format(args.output)
Example #3
0
def process(args):

  #if args.format == "adjlist":
  #  G = graph.load_adjacencylist(args.input, undirected=args.undirected)
  #elif args.format == "edgelist":
  #  G = graph.load_edgelist(args.input, undirected=args.undirected)
  #elif args.format == "mat":
  #  G = graph.load_matfile(args.input, variable_name=args.matfile_variable_name, undirected=args.undirected)
  if args.format == "w_edgelist":
    G = graph.load_weighted_edgelist(args.input, undirected=args.undirected)
  else:
    raise Exception("Unknown file format: '%s'.  This version supports only 'w_edgelist'" % args.format)

  print("Number of nodes: {}".format(len(G.nodes())))

  num_walks = len(G.nodes()) * args.number_walks

  print("Number of walks: {}".format(num_walks))

  data_size = num_walks * args.walk_length

  print("Data size (walks*length): {}".format(data_size))

  if True:
    
    print("Initailizing...")
    
    vertex_counts = G.degree(nodes=G.iterkeys())
    #model = Word2Vec(None, size=args.representation_size, window=args.window_size, min_count=0, workers=args.workers)
    model = Skipgram(sentences=None, vocabulary_counts=vertex_counts,
                     size=args.representation_size,
                     window=args.window_size, min_count=0, workers=args.workers, sg=args.sg)

    print("Walking & Training...")
    sys.stderr.write("\rprogress: 0.00 [0/%d] %%" % (args.number_walks+1))

    for i in xrange(args.number_walks):
        
        sys.stderr.write("\rprogress: %.2f %% [%d/%d] (walk step) " % ((i)*100./(args.number_walks+1), i+1, args.number_walks+1))
        sys.stderr.flush()
        walks = graph.build_deepwalk_corpus(G, num_paths=args.number_walks,
                                            path_length=args.walk_length, alpha=0., rand=random.Random(args.seed), workers=args.workers)

        sys.stderr.write("\rprogress: %.2f %% [%d/%d] (train step) " % ((i+.5)*100./(args.number_walks+1), i+1, args.number_walks+1))
        sys.stderr.flush()

        #model.build_vocab(walks)
        model.train(walks)
    sys.stderr.write("\rprogress: 100.00 %%\n")
    sys.stderr.flush()

  else:
    print("Data size {} is larger than limit (max-memory-data-size: {}).  Dumping walks to disk.".format(data_size, args.max_memory_data_size))
    print("Walking...")

    walks_filebase = args.output + ".walks"
    walk_files = serialized_walks.write_walks_to_disk(G, walks_filebase, num_paths=args.number_walks,
                                         path_length=args.walk_length, alpha=0.1, rand=random.Random(args.seed),
                                         num_workers=args.workers)

    print("Counting vertex frequency...")
    if not args.vertex_freq_degree:
      vertex_counts = serialized_walks.count_textfiles(walk_files, args.workers)
    else:
      # use degree distribution for frequency in tree
      vertex_counts = G.degree(nodes=G.iterkeys())

    print("Training...")
    model = Skipgram(sentences=serialized_walks.combine_files_iter(walk_files), vocabulary_counts=vertex_counts,
                     size=args.representation_size,
                     window=args.window_size, min_count=0, workers=args.workers)

  model.save_word2vec_format(args.output)
Example #4
0
def process(edges_list,
            undirected=True,
            number_walks=10,
            walk_length=40,
            window_size=5,
            workers=1,
            dimensions=64,
            max_memory_data_size=1000000000,
            seed=0,
            vertex_freq_degree=False):
    G = graph.load_edgelist(edges_list, undirected=undirected)

    #print("Number of nodes: {}".format(len(G.nodes())))

    num_walks = len(G.nodes()) * number_walks

    #print("Number of walks: {}".format(num_walks))

    data_size = num_walks * walk_length

    #print("Data size (walks*length): {}".format(data_size))

    if data_size < max_memory_data_size:
        #  print("Walking...")
        walks = graph.build_deepwalk_corpus(G,
                                            num_paths=number_walks,
                                            path_length=walk_length,
                                            alpha=0,
                                            rand=random.Random(seed))
        #  print("Training...")
        model = Word2Vec(walks,
                         size=dimensions,
                         window=window_size,
                         min_count=0,
                         workers=workers)
    else:
        #  print("Data size {} is larger than limit (max-memory-data-size: {}).  Dumping walks to disk.".format(data_size, max_memory_data_size))
        #  print("Walking...")

        walks_filebase = "karate.embeddings" + ".walks"
        walk_files = serialized_walks.write_walks_to_disk(
            G,
            walks_filebase,
            num_paths=number_walks,
            path_length=walk_length,
            alpha=0,
            rand=random.Random(seed),
            num_workers=workers)

        #  print("Counting vertex frequency...")
        if not vertex_freq_degree:
            vertex_counts = serialized_walks.count_textfiles(
                walk_files, workers)
        else:
            # use degree distribution for frequency in tree
            vertex_counts = G.degree(nodes=G.iterkeys())

    #  print("Training...")
        model = Skipgram(
            sentences=serialized_walks.combine_files_iter(walk_files),
            vocabulary_counts=vertex_counts,
            size=dimensions,
            window=window_size,
            min_count=0,
            workers=workers)

    #model.save_word2vec_format("karate.embeddings")
    return model
Example #5
0
 def generator():
     return serialized_walks.combine_files_iter(walk_files)
Example #6
0
def process(args):

    #if args.format == "adjlist":
    #  G = graph.load_adjacencylist(args.input, undirected=args.undirected)
    #elif args.format == "edgelist":
    #  G = graph.load_edgelist(args.input, undirected=args.undirected)
    #elif args.format == "mat":
    #  G = graph.load_matfile(args.input, variable_name=args.matfile_variable_name, undirected=args.undirected)
    if args.format == "w_edgelist":
        G = graph.load_weighted_edgelist(args.input,
                                         undirected=args.undirected)
    else:
        raise Exception(
            "Unknown file format: '%s'.  This version supports only 'w_edgelist'"
            % args.format)

    print("Number of nodes: {}".format(len(G.nodes())))

    num_walks = len(G.nodes()) * args.number_walks

    print("Number of walks: {}".format(num_walks))

    data_size = num_walks * args.walk_length

    print("Data size (walks*length): {}".format(data_size))

    if True:

        print("Initailizing...")

        vertex_counts = G.degree(nodes=G.iterkeys())
        #model = Word2Vec(None, size=args.representation_size, window=args.window_size, min_count=0, workers=args.workers)
        model = Skipgram(sentences=None,
                         vocabulary_counts=vertex_counts,
                         size=args.representation_size,
                         window=args.window_size,
                         min_count=0,
                         workers=args.workers,
                         sg=args.sg)

        print("Walking & Training...")
        sys.stderr.write("\rprogress: 0.00 [0/%d] %%" %
                         (args.number_walks + 1))

        for i in xrange(args.number_walks):

            sys.stderr.write(
                "\rprogress: %.2f %% [%d/%d] (walk step) " %
                ((i) * 100. /
                 (args.number_walks + 1), i + 1, args.number_walks + 1))
            sys.stderr.flush()
            walks = graph.build_deepwalk_corpus(G,
                                                num_paths=args.number_walks,
                                                path_length=args.walk_length,
                                                alpha=0.,
                                                rand=random.Random(args.seed),
                                                workers=args.workers)

            sys.stderr.write(
                "\rprogress: %.2f %% [%d/%d] (train step) " %
                ((i + .5) * 100. /
                 (args.number_walks + 1), i + 1, args.number_walks + 1))
            sys.stderr.flush()

            #model.build_vocab(walks)
            model.train(walks)
        sys.stderr.write("\rprogress: 100.00 %%\n")
        sys.stderr.flush()

    else:
        print(
            "Data size {} is larger than limit (max-memory-data-size: {}).  Dumping walks to disk."
            .format(data_size, args.max_memory_data_size))
        print("Walking...")

        walks_filebase = args.output + ".walks"
        walk_files = serialized_walks.write_walks_to_disk(
            G,
            walks_filebase,
            num_paths=args.number_walks,
            path_length=args.walk_length,
            alpha=0.1,
            rand=random.Random(args.seed),
            num_workers=args.workers)

        print("Counting vertex frequency...")
        if not args.vertex_freq_degree:
            vertex_counts = serialized_walks.count_textfiles(
                walk_files, args.workers)
        else:
            # use degree distribution for frequency in tree
            vertex_counts = G.degree(nodes=G.iterkeys())

        print("Training...")
        model = Skipgram(
            sentences=serialized_walks.combine_files_iter(walk_files),
            vocabulary_counts=vertex_counts,
            size=args.representation_size,
            window=args.window_size,
            min_count=0,
            workers=args.workers)

    model.save_word2vec_format(args.output)
def process(args):

  # Build "(Node, Layer)" map
  if args.floor != "":
    floorFile = open(args.floor, 'r')
    for line in floorFile:
      nd, layer = line.strip().split()[:2]
      nd = int(nd)
      layer = int(layer)
      #print nd, layer
      if nd not in graph.Graph.nodePos:
        graph.Graph.nodeList.append(graph.NodeType(nd,layer))
        graph.Graph.nodePos[nd] = len(graph.Graph.nodeList)-1

  # read input Graph
  if args.format == "adjlist":
    G = graph.load_adjacencylist(args.input, undirected=args.undirected)
  elif args.format == "edgelist":
    G = graph.load_edgelist(args.input, undirected=args.undirected)
  elif args.format == "mat":
    G = graph.load_matfile(args.input, variable_name=args.matfile_variable_name, undirected=args.undirected)
  else:
    raise Exception("Unknown file format: '%s'.  Valid formats: 'adjlist', 'edgelist', 'mat'" % args.format)
  
  timelog = ""

  print("Number of nodes: {}".format(len(G.nodes())))
  num_walks = len(G.nodes()) * args.number_walks
  print("Number of walks: {}".format(num_walks))
  data_size = num_walks * args.walk_length
  print("Data size (walks*length): {}".format(data_size))

  # Centrality calculation >> store in File
  '''
  centrality = nxGraph(args.input)
  print centrality
  fo = open("closeness.txt","wb")
  for k in centrality.keys():
    fo.write("{} {}\n".format(k,centrality[k]))
  fo.close()
  '''
  #exit()
  lsfile = open(args.LSfile, 'r')
  calculateBC(lsfile)
  #exit()

  #building (Unit)Metapath Table
  MPList = []
  graph.Graph.mpath = []
  if args.metapath != "":
    mpfile = open(args.metapath, 'r')
    for line in mpfile:
      MPList.append(int(line.strip().split()[0]))
  print "(Unit)Metapath: {}".format(MPList)
  while len(graph.Graph.mpath) < args.walk_length:
    graph.Graph.mpath.extend(MPList)
  args.walk_length = len(graph.Graph.mpath)
  print "(Full)Metapath: {}\nargs.walk_length: {}".format(graph.Graph.mpath, args.walk_length)
  
  tStart = time.time()

  if data_size < args.max_memory_data_size:
    print("Walking...")
    walks = graph.build_deepwalk_corpus(G, num_paths=args.number_walks,
                                        path_length=args.walk_length, alpha=0, rand=random.Random())
    tEnd = time.time()
    print "Walking takes {} seconds".format(round(tEnd - tStart, 3))
    timelog = "{}, {}".format( timelog, round(tEnd-tStart, 3) )
    print "Number of walks generated: {}".format(len(walks))

    tStart = time.time()
    print("Training...")
    model = Word2Vec(walks, size=args.representation_size, window=args.window_size, min_count=0, workers=args.workers)
    tEnd = time.time()

    print "Training takes {} seconds".format(round(tEnd - tStart, 3))
    timelog = "{}, {}, ,{}".format( timelog, round(tEnd-tStart, 3), len(walks) )
  else:
    print("Data size {} is larger than limit (max-memory-data-size: {}).  Dumping walks to disk.".format(data_size, args.max_memory_data_size))
    print("Walking...")

    walks_filebase = args.output + ".walks"
    walk_files = serialized_walks.write_walks_to_disk(G, walks_filebase, num_paths=args.number_walks,
                                         path_length=args.walk_length, alpha=0, rand=random.Random(args.seed),
                                         num_workers=args.workers)

    print("Counting vertex frequency...")
    if not args.vertex_freq_degree:
      vertex_counts = serialized_walks.count_textfiles(walk_files, args.workers)
    else:
      # use degree distribution for frequency in tree
      vertex_counts = G.degree(nodes=G.iterkeys())

    print("Training...")
    model = Skipgram(sentences=serialized_walks.combine_files_iter(walk_files), vocabulary_counts=vertex_counts,
                     size=args.representation_size,
                     window=args.window_size, min_count=0, workers=args.workers)

  model.save_word2vec_format(args.output)
  with open(args.output, 'r') as f:
    timelog = "{}, {}\n".format( timelog, f.readline().split()[0] )
  with open(args.timelog, 'ab') as tl:
    tl.write(timelog)