def _gauss(r, mean, width): return _multigaussfun(r, mean, width) # Create model dd_gauss = Model(_gauss, constants='r') dd_gauss.description = 'Gaussian distribution model' # Parameters dd_gauss.mean.set(description='Mean', lb=1.0, ub=20, par0=3.5, units='nm') dd_gauss.width.set(description='Standard deviation', lb=0.05, ub=2.5, par0=0.2, units='nm') # Add documentation dd_gauss.__doc__ = _dd_docstring(dd_gauss, notes) + docstr_example('dd_gauss') #======================================================================================= # dd_gauss2 #======================================================================================= notes = r""" **Model** :math:`P(r) = a_1\frac{1}{\sigma_1\sqrt{2\pi}}\exp\left(-\frac{(r-\left<r_1\right>)^2}{2\sigma_1^2}\right) + a_2\frac{1}{\sigma_2\sqrt{2\pi}}\exp\left(-\frac{(r-\left<r_2\right>)^2}{2\sigma_2^2}\right)` where `\left<r\right>_i` are the mean distances, `\sigma_i` the standard deviations, and `a_i` are the amplitudes of the Gaussians. """ def _gauss2(r, mean1, width1, mean2, width2): return _multigaussfun(r, [mean1, mean2], [width1, width2])
B = np.exp(-κ * lam * conc * D * np.abs(t * 1e-6)) return B # Create model bg_hom3d = Model(_hom3d, constants='t') bg_hom3d.description = 'Background from a homogeneous distribution of spins in a 3D medium' # Parameters bg_hom3d.conc.set(description='Spin concentration', lb=0.01, ub=5000, par0=50, units='μM') bg_hom3d.lam.set(description='Pathway amplitude', lb=0, ub=1, par0=1, units='') # Add documentation bg_hom3d.__doc__ = _docstring(bg_hom3d, notes) #======================================================================================= # bg_hom3d_phase #======================================================================================= notes = r""" **Model** This model describes the phase shift due to inter-molecular interactions between one observer spin with a 3D homogenous distribution of spins of concentration `c_s` The expression for this model is .. math:: B(t) = \mathrm{exp}\left(-\ii\frac{8\pi}{9\sqrt{3}}(\sqrt{3} + \mathrm{ln}(2-\sqrt{3}))\lambda c_s D |t|\right)` where `c_s` is the spin concentration (entered in spins/m\ :sup:`3` into this expression) and D is the dipolar constant