def experiment(experiment_name=None): domain = "domain.pddl" domain_dir = "blocks" # benchmark_dir = BENCHMARK_DIR benchmark_dir = PYPERPLAN_BENCHMARK_DIR # domain_dir = "gripper" prob01 = dict( lp_max_weight=10, benchmark_dir=benchmark_dir, instances="task01.pddl", num_states=500, num_sampled_states=None, random_seed=12, max_concept_size=20, max_concept_grammar_iterations=3, concept_generator=None, parameter_generator=add_domain_parameters, feature_namer=feature_namer, ) parameters = { "task01": prob01, }.get(experiment_name or "test") return generate_experiment(domain_dir, domain, **parameters)
def experiment(experiment_name=None): domain = "domain.pddl" domain_dir = "childsnacks" benchmark_dir = BENCHMARK_DIR childsnacks_1_incremental = dict( experiment_class=IncrementalExperiment, lp_max_weight=10, benchmark_dir=benchmark_dir, instances=[ 'child-snack_pfile01.pddl', ], test_instances=['child-snack_pfile01-2.pddl'], test_domain=domain, #distance_feature_max_complexity=10, num_states=200, initial_sample_size=8, max_concept_grammar_iterations=3, initial_concept_bound=8, max_concept_bound=12, concept_bound_step=2, batch_refinement_size=5, clean_workspace=False, parameter_generator=add_domain_parameters, feature_namer=feature_namer, ) parameters = { "childsnacks_1_incremental": childsnacks_1_incremental, }.get(experiment_name or "test") return generate_experiment(domain_dir, domain, **parameters)
def experiment(experiment_name=None): domain = "domain.pddl" domain_dir = "storage" benchmark_dir = DOWNWARD_BENCHMARKS_DIR storage_incremental = dict( experiment_class=IncrementalExperiment, lp_max_weight=10, benchmark_dir=benchmark_dir, instances = ['p01.pddl', 'p02.pddl', 'p03.pddl', 'p04.pddl', 'p05.pddl', 'p06.pddl', 'p07.pddl',], test_instances=['p08.pddl', 'p09.pddl', 'p10.pddl', 'p11.pddl', 'p12.pddl', 'p13.pddl', 'p14.pddl', 'p15.pddl', 'p16.pddl', 'p17.pddl', 'p18.pddl', 'p19.pddl', 'p20.pddl', 'p21.pddl', 'p22.pddl', 'p23.pddl', 'p24.pddl', 'p25.pddl', 'p26.pddl', 'p27.pddl', 'p28.pddl', 'p29.pddl', 'p30.pddl',], test_domain=domain, distance_feature_max_complexity=6, num_states=10000, initial_sample_size=100, max_concept_grammar_iterations=3, initial_concept_bound=8, max_concept_bound=16, concept_bound_step=2, batch_refinement_size=50, clean_workspace=False, parameter_generator=add_domain_parameters, feature_namer=feature_namer, ) parameters = { "storage_incremental": storage_incremental, }.get(experiment_name or "test") return generate_experiment(domain_dir, domain, **parameters)
def experiment(experiment_name=None): domain = "domain.pddl" domain_dir = "logistics" benchmark_dir = PYPERPLAN_BENCHMARK_DIR # Logistics is currently not working logistics_1 = dict( lp_max_weight=10, benchmark_dir=benchmark_dir, instances=["task01.pddl"], test_instances=[ "task02.pddl", ], test_domain=domain, distance_feature_max_complexity=0, num_states=20000, num_sampled_states=None, random_seed=12, max_concept_size=10, max_concept_grammar_iterations=3, concept_generator=None, parameter_generator=add_domain_parameters, feature_namer=feature_namer, ) logistics_1_incremental = dict( lp_max_weight=10, benchmark_dir=benchmark_dir, instances=["task01.pddl"], test_instances=[ "task02.pddl", ], test_domain=domain, distance_feature_max_complexity=0, num_states=20000, initial_sample_size=8, max_concept_grammar_iterations=3, initial_concept_bound=8, max_concept_bound=12, concept_bound_step=2, batch_refinement_size=5, clean_workspace=False, parameter_generator=add_domain_parameters, feature_namer=feature_namer, ) parameters = { "logistics_1": logistics_1, "logistics_1_incremental": logistics_1_incremental, }.get(experiment_name or "test") return generate_experiment(domain_dir, domain, **parameters)
def experiment(experiment_name): domain = "domain.pddl" domain_dir = "grid" benchmark_dir = BENCHMARK_DIR experiments = dict() experiments["prob01"] = dict( lp_max_weight=10, benchmark_dir=benchmark_dir, instances="prob01.pddl", test_instances=["prob02.pddl"], test_domain=domain, # instances="task01.pddl", num_states=300, # num_sampled_states=None, random_seed=12, max_concept_size=10, max_concept_grammar_iterations=3, concept_generator=None, # concept_generator=generate_chosen_concepts, parameter_generator=add_domain_parameters, feature_namer=feature_namer, ) experiments["grid_inc"] = dict( # domain_dir="blocks-downward", lp_max_weight=10, experiment_class=IncrementalExperiment, instances=["prob01.pddl", "prob02.pddl"], test_instances=["prob03.pddl", "prob04.pddl", "prob05.pddl"], test_domain=domain, # This is number of sampled states *per training instance*. In an increm. experiment, they will be processed # in batches, so we can set them high enough. num_states=500, initial_sample_size=20, max_concept_grammar_iterations=3, initial_concept_bound=8, max_concept_bound=8, concept_bound_step=2, batch_refinement_size=5, # quiet=True, clean_workspace=False, # concept_generator=generate_chosen_concepts, parameter_generator=add_domain_parameters, feature_namer=feature_namer, ) # Select the actual experiment parameters according to the command-line option parameters = experiments[experiment_name] parameters["domain_dir"] = parameters.get("domain_dir", domain_dir) parameters["domain"] = parameters.get("domain", domain) return generate_experiment(**parameters)
def experiment(experiment_name=None): domain = "domain.pddl" domain_dir = "spanner" benchmark_dir = BENCHMARK_DIR # Experiment used in the paper spanner_1_incremental = dict( experiment_class=IncrementalExperiment, lp_max_weight=5, benchmark_dir=benchmark_dir, instances=[ 'training-1-1-5.pddl', 'training-2-1-5.pddl', 'training-2-2-5.pddl', 'training-3-1-5.pddl', 'training-3-3-5.pddl', 'training-4-2-5.pddl', 'training-4-4-5.pddl', 'training-5-3-5.pddl', 'training-5-4-5.pddl', 'training-5-5-5.pddl', 'training-1-1-6.pddl', 'training-1-1-20.pddl', ], test_instances=[ "prob-3-3-3-1540903410.pddl", "prob-4-3-3-1540907466.pddl", "prob-4-3-3-1540907466.pddl", "prob-10-10-10-1540903568.pddl", "prob-15-10-8-1540913795.pddl", "prob-10-10-25.pddl", "prob-15-15-25.pddl" ], # "prob-20-15-40.pddl", # "prob-20-20-50.pddl",], test_domain=domain, num_states=12000, initial_sample_size=100, max_concept_grammar_iterations=None, initial_concept_bound=8, max_concept_bound=12, concept_bound_step=2, batch_refinement_size=50, clean_workspace=False, parameter_generator=None, # add_domain_parameters, ) parameters = { "spanner_1_incremental": spanner_1_incremental, }.get(experiment_name or "test") return generate_experiment(domain_dir, domain, **parameters)
def experiment(experiment_name): domain = "domain.pddl" domain_dir = "gripper" benchmark_dir = PYPERPLAN_BENCHMARK_DIR experiments = dict() experiments["incremental"] = dict( lp_max_weight=10, experiment_class=IncrementalExperiment, benchmark_dir=benchmark_dir, instances=['task01.pddl', 'task02.pddl', 'task03.pddl', 'task04.pddl',], test_instances=['task05.pddl', 'task06.pddl', 'task07.pddl', 'task08.pddl', 'task09.pddl', 'task10.pddl', 'task11.pddl', 'task12.pddl', 'task13.pddl', 'task14.pddl', 'task15.pddl', 'task16.pddl', 'task17.pddl', 'task18.pddl', 'task19.pddl', 'task20.pddl',], test_domain=domain, # This is number of sampled states *per training instance*. In an increm. experiment, they will be processed # in batches, so we can set them high enough. num_states=3000, initial_sample_size=100, max_concept_grammar_iterations=3, initial_concept_bound=8, max_concept_bound=12, concept_bound_step=2, batch_refinement_size=10, clean_workspace=False, parameter_generator=None, feature_namer=feature_namer, ) # Select the actual experiment parameters according to the command-line option parameters = experiments[experiment_name] parameters["domain_dir"] = parameters.get("domain_dir", domain_dir) parameters["domain"] = parameters.get("domain", domain) return generate_experiment(**parameters)
def experiment(): benchmark_dir = DOWNWARD_BENCHMARKS_DIR experiments = dict() list_of_experiments = [] list_of_domains = domains #[x for x in os.listdir(benchmark_dir)] for domain in list_of_domains: domain_dir = os.path.join(DOWNWARD_BENCHMARKS_DIR, domain) if not os.path.isdir(domain_dir): continue if "domain.pddl" not in os.listdir(domain_dir): continue instances = [] experiment_name = "experiment_" + domain for problem in os.listdir(domain_dir): if problem == "domain.pddl": continue instances.append(problem) experiments[experiment_name] = dict( lp_max_weight=5, experiment_class=IncrementalExperiment, benchmark_dir=benchmark_dir, instances=[instances[1], instances[2]], test_instances=[instances[1]], test_domain='domain.pddl', # This is number of sampled states *per training instance*. In an increm. experiment, they will be processed # in batches, so we can set them high enough. num_states=2000, initial_sample_size=50, max_concept_grammar_iterations=3, initial_concept_bound=7, max_concept_bound=12, concept_bound_step=2, batch_refinement_size=10, clean_workspace=False, parameter_generator=None, ) # Select the actual experiment parameters according to the command-line option parameters = experiments[experiment_name] parameters["domain_dir"] = parameters.get("domain_dir", domain_dir) parameters["domain"] = parameters.get("domain", 'domain.pddl') list_of_experiments.append(generate_experiment(**parameters)) return list_of_experiments
def experiment(experiment_name): domain = "domain.pddl" domain_dir = "gripper-m" benchmark_dir = BENCHMARK_DIR experiments = dict() # Experiment used in the paper experiments["gripper_std_inc"] = dict( lp_max_weight=5, experiment_class=IncrementalExperiment, instances=['test01.pddl', 'test02.pddl', 'test03.pddl', 'test04.pddl', 'test05.pddl', 'test06.pddl', 'prob03.pddl', 'prob_3balls_3rooms_1rob.pddl'], test_instances=["prob01.pddl", "prob02.pddl", "prob03.pddl", "prob04.pddl", "prob05.pddl", "prob06.pddl", 'prob_3balls_3rooms_1rob.pddl', "prob_4balls_4rooms_1rob.pddl", "prob_4balls_4rooms_2rob.pddl", "prob_10balls_4rooms_1rob.pddl",], test_domain=domain, # This is number of sampled states *per training instance*. In an increm. experiment, they will be processed # in batches, so we can set them high enough. num_states=12000, initial_sample_size=100, max_concept_grammar_iterations=None, random_seed=19, initial_concept_bound=8, max_concept_bound=12, concept_bound_step=2, batch_refinement_size=50, clean_workspace=False, parameter_generator=None, # add_domain_parameters, feature_namer=feature_namer, ) # Select the actual experiment parameters according to the command-line option parameters = experiments[experiment_name] parameters["domain_dir"] = parameters.get("domain_dir", domain_dir) parameters["domain"] = parameters.get("domain", domain) return generate_experiment(**parameters)
def experiment(experiment_name=None): domain = "domain.pddl" domain_dir = "blocks" # benchmark_dir = BENCHMARK_DIR benchmark_dir = PYPERPLAN_BENCHMARK_DIR # domain_dir = "gripper" experiments = dict() experiments["task01_inc"] = dict( lp_max_weight=5, benchmark_dir=benchmark_dir, experiment_class=IncrementalExperiment, instances=['task01.pddl', 'task02.pddl', 'task03.pddl', ], test_instances=['task04.pddl', 'task05.pddl', 'task06.pddl', 'task07.pddl', 'task08.pddl', ], test_domain=domain, # This is number of sampled states *per training instance*. In an increm. experiment, they will be processed # in batches, so we can set them high enough. num_states=12000, initial_sample_size=125, max_concept_grammar_iterations=3, initial_concept_bound=12, max_concept_bound=12, concept_bound_step=2, batch_refinement_size=10, clean_workspace=False, parameter_generator=None, concept_generator=generate_chosen_concepts, feature_namer=feature_namer, ) parameters = experiments[experiment_name] parameters["domain_dir"] = parameters.get("domain_dir", domain_dir) parameters["domain"] = parameters.get("domain", domain) return generate_experiment(**parameters)
def experiment(experiment_name=None): domain = "domain.pddl" domain_dir = "blocks" exps = dict() exps["clear_5"] = dict( instances="instance_5_clear_x_1.pddl", test_domain=domain, test_instances=[ "instance_5_clear_x_2.pddl", "instance_8_clear_x_0.pddl" ], lp_max_weight=5, num_states=2000, max_width=[-1], num_sampled_states=300, max_concept_size=6, max_concept_grammar_iterations=None, ) exps["on_x_y_big"] = dict( instances=[ "inst_on_x_y_10.pddl", "inst_on_x_y_14.pddl", "holding_a_b_unclear.pddl", ], test_domain=domain, test_instances=[ "inst_on_x_y_5.pddl", "inst_on_x_y_6.pddl", "inst_on_x_y_7.pddl", "inst_on_x_y_7_2.pddl", ], lp_max_weight=5, num_states=2000, max_width=[-1], num_sampled_states=50, max_concept_size=6, max_concept_grammar_iterations=None, ) exps["on_x_y_inc"] = dict( lp_max_weight=5, experiment_class=IncrementalExperiment, instances=[ "inst_on_x_y_10.pddl", ], test_instances=[ "inst_on_x_y_11.pddl", ], test_domain=domain, # This is number of sampled states *per training instance*. In an increm. experiment, they will be processed # in batches, so we can set them high enough. num_states=12000, initial_sample_size=50, initial_concept_bound=6, max_concept_bound=12, concept_bound_step=2, batch_refinement_size=10, clean_workspace=False, ) parameters = exps[experiment_name] parameters["domain_dir"] = parameters.get("domain_dir", domain_dir) parameters["domain"] = parameters.get("domain", domain) return generate_experiment(**parameters)
def experiment(experiment_name=None): domain = "domain.pddl" domain_dir = "miconic" benchmark_dir = BENCHMARK_DIR miconic_1_simple = dict( experiment_class=IncrementalExperiment, lp_max_weight=10, benchmark_dir=benchmark_dir, instances=[ 's1-0.pddl', 's1-1.pddl', 's1-2.pddl', 's1-3.pddl', # 's1-4.pddl', 's2-0.pddl', 's2-1.pddl', 's2-2.pddl', 's2-3.pddl', # 's2-4.pddl', # 's3-0.pddl', # 's3-1.pddl', # 's3-2.pddl', # 's3-3.pddl', # 's3-4.pddl', # 's4-0.pddl', # 's4-1.pddl', # 's4-2.pddl', # 's4-3.pddl', # 's4-4.pddl', ], test_instances=['s1-4.pddl', 's2-4.pddl', 's3-4.pddl'], test_domain=domain, # distance_feature_max_complexity=10, num_states=20000, initial_sample_size=100, max_concept_grammar_iterations=10, initial_concept_bound=8, max_concept_bound=16, concept_bound_step=2, batch_refinement_size=50, clean_workspace=False, parameter_generator=add_domain_parameters, feature_namer=feature_namer, concept_generator=generate_chosen_concepts, ) # Experiment used in the paper miconic_1_incremental = dict( experiment_class=IncrementalExperiment, lp_max_weight=4, benchmark_dir=benchmark_dir, instances=[ 's1-0.pddl', 's1-1.pddl', 's1-2.pddl', 's1-3.pddl', 's1-4.pddl', 's2-0.pddl', 's2-1.pddl', 's2-2.pddl', 's2-3.pddl', 's2-4.pddl', 's3-0.pddl', 's3-1.pddl', 's3-2.pddl', 's3-3.pddl', ], test_instances=[ 's5-0.pddl', 's5-1.pddl', 's5-2.pddl', 's5-3.pddl', 's5-4.pddl', 's6-0.pddl', 's6-1.pddl', 's6-2.pddl', 's6-3.pddl', 's6-4.pddl', 's7-0.pddl', 's7-1.pddl', 's7-2.pddl', 's7-3.pddl', 's7-4.pddl', 's8-0.pddl', 's8-1.pddl', 's8-2.pddl', 's8-3.pddl', 's8-4.pddl', 's9-0.pddl', 's9-1.pddl', 's9-2.pddl', 's9-3.pddl', 's9-4.pddl', 's10-0.pddl', 's10-1.pddl', 's10-2.pddl', 's10-3.pddl', 's10-4.pddl', 's1-0.pddl', 's11-0.pddl', 's11-1.pddl', 's11-2.pddl', 's11-3.pddl', 's11-4.pddl', 's1-1.pddl', 's12-0.pddl', 's12-1.pddl', 's12-2.pddl', 's12-3.pddl', 's12-4.pddl', 's1-2.pddl', 's13-0.pddl', 's13-1.pddl', 's13-2.pddl', 's13-3.pddl', 's13-4.pddl', 's1-3.pddl', 's14-0.pddl', 's14-1.pddl', 's14-2.pddl', 's14-3.pddl', 's14-4.pddl', 's1-4.pddl', 's15-0.pddl', 's15-1.pddl', 's15-2.pddl', 's15-3.pddl', 's15-4.pddl', 's16-0.pddl', 's16-1.pddl', 's16-2.pddl', 's16-3.pddl', 's16-4.pddl', 's17-0.pddl', 's17-1.pddl', 's17-2.pddl', 's17-3.pddl', 's17-4.pddl', 's18-0.pddl', 's18-1.pddl', 's18-2.pddl', 's18-3.pddl', 's18-4.pddl', 's19-0.pddl', 's19-1.pddl', 's19-2.pddl', 's19-3.pddl', 's19-4.pddl', 's20-0.pddl', 's20-1.pddl', 's20-2.pddl', 's20-3.pddl', 's20-4.pddl', 's2-0.pddl', 's21-0.pddl', 's21-1.pddl', 's21-2.pddl', 's21-3.pddl', 's21-4.pddl', 's2-1.pddl', 's22-0.pddl', 's22-1.pddl', 's22-2.pddl', 's22-3.pddl', 's22-4.pddl', 's2-2.pddl', 's23-0.pddl', 's23-1.pddl', 's23-2.pddl', 's23-3.pddl', 's23-4.pddl', 's2-3.pddl', 's24-0.pddl', 's24-1.pddl', 's24-2.pddl', 's24-3.pddl', 's24-4.pddl', 's2-4.pddl', 's25-0.pddl', 's25-1.pddl', 's25-2.pddl', 's25-3.pddl', 's25-4.pddl', 's26-0.pddl', 's26-1.pddl', 's26-2.pddl', 's26-3.pddl', 's26-4.pddl', 's27-0.pddl', 's27-1.pddl', 's27-2.pddl', 's27-3.pddl', 's27-4.pddl', 's28-0.pddl', 's28-1.pddl', 's28-2.pddl', 's28-3.pddl', 's28-4.pddl', 's29-0.pddl', 's29-1.pddl', 's29-2.pddl', 's29-3.pddl', 's29-4.pddl', 's30-0.pddl', 's30-1.pddl', 's30-2.pddl', 's30-3.pddl', 's30-4.pddl', ], test_domain=domain, #distance_feature_max_complexity=5, num_states=12000, initial_sample_size=50, max_concept_grammar_iterations=10, initial_concept_bound=8, max_concept_bound=16, concept_bound_step=2, batch_refinement_size=50, clean_workspace=False, parameter_generator=None, feature_namer=feature_namer, #concept_generator=generate_chosen_concepts, ) parameters = { "miconic_1_incremental": miconic_1_incremental, "miconic_1_simple": miconic_1_simple, }.get(experiment_name or "test") return generate_experiment(domain_dir, domain, **parameters)
def experiment(experiment_name=None): domain = "domain.pddl" domain_dir = "spanner-ipc2011" benchmark_dir = BENCHMARK_DIR spanner_1 = dict( lp_max_weight=10, benchmark_dir=benchmark_dir, #instances=["pfile01-001-training-inst.pddl"], instances=["prob-3-3-3-1540903410.pddl"], #"prob-4-4-3-1540907456.pddl", #"prob-4-3-3-1540907466.pddl",], #"prob-10-10-10-1540903568.pddl", #"prob-15-10-8-1540913795.pddl"], test_instances=[ "pfile01-001.pddl", "pfile01-002.pddl", "pfile01-003.pddl", "pfile01-004.pddl", "pfile01-005.pddl", "pfile02-006.pddl", "pfile02-007.pddl", "pfile02-008.pddl", "pfile02-009.pddl", "pfile02-010.pddl", "pfile03-011.pddl", "pfile03-012.pddl", "pfile03-013.pddl", "pfile03-014.pddl", "pfile03-015.pddl", "pfile04-016.pddl", "pfile04-017.pddl", "pfile04-018.pddl", "pfile04-019.pddl", "pfile04-020.pddl", "pfile05-021.pddl", "pfile05-022.pddl", "pfile05-023.pddl", "pfile05-024.pddl", "pfile05-025.pddl", "pfile06-026.pddl", "pfile06-027.pddl", "pfile06-028.pddl", "pfile06-029.pddl", "pfile06-030.pddl", ], test_domain=domain, distance_feature_max_complexity=0, num_states=300, num_sampled_states=None, random_seed=12, max_concept_size=10, max_concept_grammar_iterations=3, concept_generator=None, parameter_generator=add_domain_parameters, feature_namer=feature_namer, ) spanner_1_incremental = dict( lp_max_weight=10, benchmark_dir=benchmark_dir, instances=["pfile01-001-training-inst.pddl"], test_instances=[ "pfile01-001.pddl", "pfile01-002.pddl", "pfile01-003.pddl", "pfile01-004.pddl", "pfile01-005.pddl", "pfile02-006.pddl", "pfile02-007.pddl", "pfile02-008.pddl", "pfile02-009.pddl", "pfile02-010.pddl", "pfile03-011.pddl", "pfile03-012.pddl", "pfile03-013.pddl", "pfile03-014.pddl", "pfile03-015.pddl", "pfile04-016.pddl", "pfile04-017.pddl", "pfile04-018.pddl", "pfile04-019.pddl", "pfile04-020.pddl", "pfile05-021.pddl", "pfile05-022.pddl", "pfile05-023.pddl", "pfile05-024.pddl", "pfile05-025.pddl", "pfile06-026.pddl", "pfile06-027.pddl", "pfile06-028.pddl", "pfile06-029.pddl", "pfile06-030.pddl", ], test_domain=domain, distance_feature_max_complexity=0, num_states=1000, initial_sample_size=8, max_concept_grammar_iterations=3, initial_concept_bound=8, max_concept_bound=12, concept_bound_step=2, batch_refinement_size=5, clean_workspace=False, parameter_generator=add_domain_parameters, feature_namer=feature_namer, ) parameters = { "spanner_1": spanner_1, "spanner_1_incremental": spanner_1_incremental, }.get(experiment_name or "test") return generate_experiment(domain_dir, domain, **parameters)
def experiment(experiment_name=None): domain = "domain.pddl" domain_dir = "visitall" # Incremental version # Experiment used in the paper problem03full_incremental = dict( benchmark_dir=BENCHMARK_DIR, lp_max_weight=5, experiment_class=IncrementalExperiment, test_domain=domain, instances=[ 'training01.pddl', 'training02.pddl', 'training03.pddl', 'training04.pddl', 'training05.pddl', 'training06.pddl', 'training09.pddl', 'training10.pddl', 'training11.pddl', ], test_instances=[ "problem02-full.pddl", "problem03-full.pddl", "problem04-full.pddl", "problem05-full.pddl", "problem06-full.pddl", "problem07-full.pddl", "problem08-full.pddl", "problem09-full.pddl", "problem10-full.pddl", "problem11-full.pddl", 'p-1-10.pddl', 'p-1-11.pddl', 'p-1-12.pddl', 'p-1-13.pddl', 'p-1-14.pddl', 'p-1-15.pddl', 'p-1-16.pddl', 'p-1-17.pddl', 'p-1-18.pddl', 'p-1-5.pddl', 'p-1-6.pddl', 'p-1-7.pddl', 'p-1-8.pddl', 'p-1-9.pddl', ], num_states=10000, initial_sample_size=100, distance_feature_max_complexity=5, max_concept_grammar_iterations=10, initial_concept_bound=8, max_concept_bound=12, concept_bound_step=2, batch_refinement_size=50, clean_workspace=False, parameter_generator=add_domain_parameters, feature_namer=feature_namer, ) parameters = { "problem03full_incremental": problem03full_incremental, }.get(experiment_name or "test") return generate_experiment(domain_dir, domain, **parameters)