def load(self, dir_path='data/models/sequenceLabelling/'): self.model_config = ModelConfig.load( os.path.join(dir_path, self.model_config.model_name, self.config_file)) self.p = WordPreprocessor.load( os.path.join(dir_path, self.model_config.model_name, self.preprocessor_file)) if self.model_config.model_type.lower().find("bert") != -1: self.model = get_model(self.model_config, self.p, ntags=len(self.p.vocab_tag), dir_path=dir_path) self.model.load_model() return # load embeddings # Do not use cache in 'production' mode self.embeddings = Embeddings(self.model_config.embeddings_name, use_ELMo=self.model_config.use_ELMo, use_BERT=self.model_config.use_BERT, use_cache=False) self.model_config.word_embedding_size = self.embeddings.embed_size self.model = get_model(self.model_config, self.p, ntags=len(self.p.vocab_tag)) self.model.load(filepath=os.path.join( dir_path, self.model_config.model_name, self.weight_file))
def load(self, dir_path='data/models/sequenceLabelling/', weight_file=DEFAULT_WEIGHT_FILE_NAME): model_path = os.path.join(dir_path, self.model_config.model_name) self.model_config = ModelConfig.load( os.path.join(model_path, CONFIG_FILE_NAME)) if self.model_config.embeddings_name is not None: # load embeddings # Do not use cache in 'prediction/production' mode self.embeddings = Embeddings(self.model_config.embeddings_name, resource_registry=self.registry, use_ELMo=self.model_config.use_ELMo, use_cache=False) self.model_config.word_embedding_size = self.embeddings.embed_size else: self.embeddings = None self.model_config.word_embedding_size = 0 self.p = Preprocessor.load( os.path.join(dir_path, self.model_config.model_name, PROCESSOR_FILE_NAME)) self.model = get_model(self.model_config, self.p, ntags=len(self.p.vocab_tag), load_pretrained_weights=False, local_path=os.path.join( dir_path, self.model_config.model_name)) print( "load weights from", os.path.join(dir_path, self.model_config.model_name, weight_file)) self.model.load(filepath=os.path.join( dir_path, self.model_config.model_name, weight_file)) self.model.print_summary()
def load(self, dir_path='data/models/sequenceLabelling/'): self.p = WordPreprocessor.load(os.path.join(dir_path, self.model_config.model_name, self.preprocessor_file)) self.model_config = ModelConfig.load(os.path.join(dir_path, self.model_config.model_name, self.config_file)) # load embeddings self.embeddings = Embeddings(self.model_config.embeddings_name, use_ELMo=self.model_config.use_ELMo) self.model_config.word_embedding_size = self.embeddings.embed_size self.model = get_model(self.model_config, self.p, ntags=len(self.p.vocab_tag)) self.model.load(filepath=os.path.join(dir_path, self.model_config.model_name, self.weight_file))
def eval_nfold(self, x_test, y_test, features=None): if self.models is not None: total_f1 = 0 best_f1 = 0 best_index = 0 worst_f1 = 1 worst_index = 0 reports = [] reports_as_map = [] total_precision = 0 total_recall = 0 for i in range(self.model_config.fold_number): print('\n------------------------ fold ' + str(i) + ' --------------------------------------') if 'bert' not in self.model_config.model_type.lower(): # Prepare test data(steps, generator) test_generator = DataGenerator( x_test, y_test, batch_size=self.model_config.batch_size, preprocessor=self.p, char_embed_size=self.model_config.char_embedding_size, max_sequence_length=self.model_config. max_sequence_length, embeddings=self.embeddings, shuffle=False, features=features) # Build the evaluator and evaluate the model scorer = Scorer(test_generator, self.p, evaluation=True) scorer.model = self.models[i] scorer.on_epoch_end(epoch=-1) f1 = scorer.f1 precision = scorer.precision recall = scorer.recall reports.append(scorer.report) reports_as_map.append(scorer.report_as_map) else: # BERT architecture model dir_path = 'data/models/sequenceLabelling/' self.model_config = ModelConfig.load( os.path.join(dir_path, self.model_config.model_name, self.config_file)) self.p = WordPreprocessor.load( os.path.join(dir_path, self.model_config.model_name, self.preprocessor_file)) self.model = get_model(self.model_config, self.p, ntags=len(self.p.vocab_tag)) self.model.load_model(i) y_pred = self.model.predict(x_test, fold_id=i) nb_alignment_issues = 0 for j in range(len(y_test)): if len(y_test[i]) != len(y_pred[j]): nb_alignment_issues += 1 # BERT tokenizer appears to introduce some additional tokens without ## prefix, # but this is normally handled when predicting. # To be very conservative, the following ensure the number of tokens always # match, but it should never be used in practice. if len(y_test[j]) < len(y_pred[j]): y_test[j] = y_test[j] + ["O"] * ( len(y_pred[j]) - len(y_test[j])) if len(y_test[j]) > len(y_pred[j]): y_pred[j] = y_pred[j] + ["O"] * ( len(y_test[j]) - len(y_pred[j])) if nb_alignment_issues > 0: print("number of alignment issues with test set:", nb_alignment_issues) f1 = f1_score(y_test, y_pred) precision = precision_score(y_test, y_pred) recall = recall_score(y_test, y_pred) print("\tf1: {:04.2f}".format(f1 * 100)) print("\tprecision: {:04.2f}".format(precision * 100)) print("\trecall: {:04.2f}".format(recall * 100)) report, report_as_map = classification_report(y_test, y_pred, digits=4) reports.append(report) reports_as_map.append(report_as_map) if best_f1 < f1: best_f1 = f1 best_index = i if worst_f1 > f1: worst_f1 = f1 worst_index = i total_f1 += f1 total_precision += precision total_recall += recall fold_average_evaluation = {'labels': {}, 'micro': {}, 'macro': {}} micro_f1 = total_f1 / self.model_config.fold_number micro_precision = total_precision / self.model_config.fold_number micro_recall = total_recall / self.model_config.fold_number micro_eval_block = { 'f1': micro_f1, 'precision': micro_precision, 'recall': micro_recall } fold_average_evaluation['micro'] = micro_eval_block # field-level average over the n folds labels = [] for label in sorted(self.p.vocab_tag): if label == 'O' or label == '<PAD>': continue if label.startswith("B-") or label.startswith( "S-") or label.startswith("I-") or label.startswith( "E-"): label = label[2:] if label in labels: continue labels.append(label) sum_p = 0 sum_r = 0 sum_f1 = 0 sum_support = 0 for j in range(0, self.model_config.fold_number): if not label in reports_as_map[j]['labels']: continue report_as_map = reports_as_map[j]['labels'][label] sum_p += report_as_map["precision"] sum_r += report_as_map["recall"] sum_f1 += report_as_map["f1"] sum_support += report_as_map["support"] avg_p = sum_p / self.model_config.fold_number avg_r = sum_r / self.model_config.fold_number avg_f1 = sum_f1 / self.model_config.fold_number avg_support = sum_support / self.model_config.fold_number avg_support_dec = str(avg_support - int(avg_support))[1:] if avg_support_dec != '0': avg_support = math.floor(avg_support) block_label = { 'precision': avg_p, 'recall': avg_r, 'support': avg_support, 'f1': avg_f1 } fold_average_evaluation['labels'][label] = block_label print( "----------------------------------------------------------------------" ) print("\n** Worst ** model scores - run", str(worst_index)) print(reports[worst_index]) print("\n** Best ** model scores - run", str(best_index)) print(reports[best_index]) if 'bert' not in self.model_config.model_type.lower(): self.model = self.models[best_index] else: # copy best BERT model fold_number best_model_dir = 'data/models/sequenceLabelling/' + self.model_config.model_name + str( best_index) new_model_dir = 'data/models/sequenceLabelling/' + self.model_config.model_name # update new_model_dir if it already exists, keep its existing config content merge_folders(best_model_dir, new_model_dir) # clean other fold directory for i in range(self.model_config.fold_number): shutil.rmtree('data/models/sequenceLabelling/' + self.model_config.model_name + str(i)) print( "----------------------------------------------------------------------" ) print("\nAverage over", self.model_config.fold_number, "folds") print( get_report(fold_average_evaluation, digits=4, include_avgs=['micro']))