def extract_feature(waveforms, params): '''extract fbank with delta-delta and do cmvn waveforms: [batch, samples] ''' p = params with tf.variable_scope('feature_extractor'): mel_fbanks = extract_logfbank_with_delta(waveforms, params) # shape: [1, nframes, nbins, nchannels] fbank_size = utils.shape_list(mel_fbanks) #assert fbank_size[0] == 1 # This replaces CMVN estimation on data if not p.audio_global_cmvn: mean = tf.reduce_mean(mel_fbanks, keepdims=True, axis=1) variance = tf.reduce_mean(tf.square(mel_fbanks - mean), keepdims=True, axis=1) else: assert p.audio_cmvn_path, p.audio_cmvn_path mean, variance = utils.load_cmvn(p.audio_cmvn_path) var_epsilon = 1e-09 mel_fbanks = utils.apply_cmvn(mel_fbanks, mean, variance, var_epsilon) # Later models like to flatten the two spatial dims. Instead, we add a # unit spatial dim and flatten the frequencies and channels. batch_size = fbank_size[0] feats = tf.concat([ tf.reshape( mel_fbanks, [batch_size, fbank_size[1], fbank_size[2], fbank_size[3]]), tf.zeros((batch_size, p.num_zeropad_frames, fbank_size[2], fbank_size[3])) ], 1) return feats # shape [batch_size, nframes, featue_size, chnanels]
def grow_finished(finished_seq, finished_scores, finished_flags, curr_seq, curr_scores, curr_finished): """ Given sequences and scores from finished sequence and current finished sequence , will gather the top k=beam size sequences to update finished seq. """ # padding zero for finished seq finished_seq = tf.concat( [finished_seq, tf.zeros([batch_size, beam_size, 1], tf.int32)], axis=2) # mask unfinished curr seq curr_scores += (1. - tf.to_float(curr_finished)) * -INF # concatenating the sequences and scores along beam axis # (batch_size, 2xbeam_size, seq_len) curr_finished_seq = tf.concat([finished_seq, curr_seq], axis=1) curr_finished_scores = tf.concat([finished_scores, curr_scores], axis=1) curr_finished_flags = tf.concat([finished_flags, curr_finished], axis=1) return utils.compute_topk_scores_and_seq( curr_finished_seq, curr_finished_scores, curr_finished_scores, curr_finished_flags, beam_size, batch_size, "grow_finished")
def _create_topk_unique(inputs, k): """Creates the top k values in sorted order with indices.""" height = inputs.shape[0] width = inputs.shape[1] neg_inf_r0 = tf.constant(-np.inf, dtype=tf.float32) ones = tf.ones([height, width], dtype=tf.float32) neg_inf_r2 = ones * neg_inf_r0 inputs = tf.where(tf.is_nan(inputs), neg_inf_r2, inputs) tmp = inputs topk_r2 = tf.zeros([height, k], dtype=tf.float32) for i in range(k): kth_order_statistic = tf.reduce_max(tmp, axis=1, keepdims=True) k_mask = tf.tile( tf.expand_dims(tf.equal(tf.range(k), tf.fill([k], i)), 0), [height, 1]) topk_r2 = tf.where(k_mask, tf.tile(kth_order_statistic, [1, k]), topk_r2) ge_r2 = tf.greater_equal(inputs, tf.tile(kth_order_statistic, [1, width])) tmp = tf.where(ge_r2, neg_inf_r2, inputs) log2_ceiling = int(math.ceil(math.log(float(int(width)), 2))) next_power_of_two = 1 << log2_ceiling count_mask = next_power_of_two - 1 mask_r0 = tf.constant(count_mask) mask_r2 = tf.fill([height, k], mask_r0) topk_r2_s32 = tf.bitcast(topk_r2, tf.int32) topk_indices_r2 = tf.bitwise.bitwise_and(topk_r2_s32, mask_r2) return topk_r2, topk_indices_r2
def _create_make_unique(inputs): """Replaces the lower bits of each element with iota.""" if inputs.shape.ndims != 2: raise ValueError("Input of top_k_with_unique must be rank-2 " "but got: %s" % inputs.shape) height = inputs.shape[0] width = inputs.shape[1] zeros = tf.zeros([height, width], dtype=tf.int32) log2_ceiling = int(math.ceil(math.log(int(width), 2))) next_power_of_two = 1 << log2_ceiling count_mask = ~(next_power_of_two - 1) count_mask_r0 = tf.constant(count_mask) count_mask_r2 = tf.fill([height, width], count_mask_r0) smallest_normal = 1 << 23 smallest_normal_r0 = tf.constant(smallest_normal, dtype=tf.int32) smallest_normal_r2 = tf.fill([height, width], smallest_normal_r0) low_bit_mask = ~(1 << 31) low_bit_mask_r0 = tf.constant(low_bit_mask, dtype=tf.int32) low_bit_mask_r2 = tf.fill([height, width], low_bit_mask_r0) iota = tf.tile(tf.expand_dims(tf.range(width, dtype=tf.int32), 0), [height, 1]) input_r2 = tf.bitcast(inputs, tf.int32) abs_r2 = tf.bitwise.bitwise_and(input_r2, low_bit_mask_r2) if_zero_r2 = tf.equal(abs_r2, zeros) smallest_normal_preserving_sign_r2 = tf.bitwise.bitwise_or( input_r2, smallest_normal_r2) input_no_zeros_r2 = tf.where(if_zero_r2, smallest_normal_preserving_sign_r2, input_r2) and_r2 = tf.bitwise.bitwise_and(input_no_zeros_r2, count_mask_r2) or_r2 = tf.bitwise.bitwise_or(and_r2, iota) return tf.bitcast(or_r2, tf.float32)
def beam_search(symbols_to_logits_fn, initial_ids, beam_size, decode_length, vocab_size, alpha, eos_id, states=None, stop_early=True, INF=1. * 1e20): """Beam search with length penalties.""" batch_size = utils.shape_list(initial_ids)[0] initial_log_probs = tf.constant([[0.] + [-INF] * (beam_size - 1)]) # (batch_size, beam_size) alive_log_probs = tf.tile(initial_log_probs, [batch_size, 1]) alive_seq = utils.expand_to_beam_size(initial_ids, beam_size) # (batch_size, beam_size, 1) alive_seq = tf.expand_dims(alive_seq, axis=2) if states: states = nest.map_structure( lambda state: utils.expand_to_beam_size(state, beam_size), states) else: states = {} # (batch_size, beam_size, 1) finished_seq = tf.zeros(utils.shape_list(alive_seq), tf.int32) # (batch_size, beam_size) finished_scores = tf.ones([batch_size, beam_size]) * -INF # (batch_size, beam_size) finished_flags = tf.zeros([batch_size, beam_size], tf.bool) def grow_finished(finished_seq, finished_scores, finished_flags, curr_seq, curr_scores, curr_finished): """ Given sequences and scores from finished sequence and current finished sequence , will gather the top k=beam size sequences to update finished seq. """ # padding zero for finished seq finished_seq = tf.concat( [finished_seq, tf.zeros([batch_size, beam_size, 1], tf.int32)], axis=2) # mask unfinished curr seq curr_scores += (1. - tf.to_float(curr_finished)) * -INF # concatenating the sequences and scores along beam axis # (batch_size, 2xbeam_size, seq_len) curr_finished_seq = tf.concat([finished_seq, curr_seq], axis=1) curr_finished_scores = tf.concat([finished_scores, curr_scores], axis=1) curr_finished_flags = tf.concat([finished_flags, curr_finished], axis=1) return utils.compute_topk_scores_and_seq( curr_finished_seq, curr_finished_scores, curr_finished_scores, curr_finished_flags, beam_size, batch_size, "grow_finished") def grow_alive(curr_seq, curr_scores, curr_log_probs, curr_finished, states): """Given sequences and scores, will gather the top k=beam size sequences.""" curr_scores += tf.to_float(curr_finished) * -INF return utils.compute_topk_scores_and_seq(curr_seq, curr_scores, curr_log_probs, curr_finished, beam_size, batch_size, "grow_alive", states) def grow_topk(i, alive_seq, alive_log_probs, states): """Inner beam search loop.""" flat_ids = tf.reshape(alive_seq, [batch_size * beam_size, -1]) # (batch_size * beam_size, decoded_length) if states: flat_states = nest.map_structure(utils.merge_beam_dim, states) flat_logits, flat_states = symbols_to_logits_fn( flat_ids, i, flat_states) states = nest.map_structure( lambda t: utils.unmerge_beam_dim(t, batch_size, beam_size), flat_states) else: flat_logits = symbols_to_logits_fn(flat_ids) logits = tf.reshape(flat_logits, [batch_size, beam_size, -1]) candidate_log_probs = utils.log_prob_from_logits(logits) log_probs = candidate_log_probs + tf.expand_dims(alive_log_probs, axis=2) length_penalty = tf.pow(((5. + tf.to_float(i + 1)) / 6.), alpha) curr_scores = log_probs / length_penalty flat_curr_scores = tf.reshape(curr_scores, [-1, beam_size * vocab_size]) topk_scores, topk_ids = tf.nn.top_k(flat_curr_scores, k=beam_size * 2) topk_log_probs = topk_scores * length_penalty topk_beam_index = topk_ids // vocab_size topk_ids %= vocab_size # Unflatten the ids batch_pos = utils.compute_batch_indices(batch_size, beam_size * 2) topk_coordinates = tf.stack([batch_pos, topk_beam_index], axis=2) topk_seq = tf.gather_nd(alive_seq, topk_coordinates) if states: states = nest.map_structure( lambda state: tf.gather_nd(state, topk_coordinates), states) topk_seq = tf.concat( [topk_seq, tf.expand_dims(topk_ids, axis=2)], axis=2) topk_finished = tf.equal(topk_ids, eos_id) return topk_seq, topk_log_probs, topk_scores, topk_finished, states def inner_loop(i, alive_seq, alive_log_probs, finished_seq, finished_scores, finished_flags, states): """Inner beam search loop.""" topk_seq, topk_log_probs, topk_scores, topk_finished, states = grow_topk( i, alive_seq, alive_log_probs, states) alive_seq, alive_log_probs, _, states = grow_alive( topk_seq, topk_scores, topk_log_probs, topk_finished, states) finished_seq, finished_scores, finished_flags, _ = grow_finished( finished_seq, finished_scores, finished_flags, topk_seq, topk_scores, topk_finished) return (i + 1, alive_seq, alive_log_probs, finished_seq, finished_scores, finished_flags, states) def _is_finished(i, unused_alive_seq, alive_log_probs, unused_finished_seq, finished_scores, unused_finished_in_finished, unused_states): """Checking termination condition. """ max_length_penalty = tf.pow( ((5. + tf.to_float(decode_length)) / 6.), alpha) lower_bound_alive_scores = alive_log_probs[:, 0] / max_length_penalty if not stop_early: lowest_score_of_finished_in_finished = tf.reduce_min( finished_scores) else: lowest_score_of_finished_in_finished = tf.reduce_max( finished_scores, axis=1) bound_is_met = tf.reduce_all( tf.greater(lowest_score_of_finished_in_finished, lower_bound_alive_scores)) return tf.logical_and(tf.less(i, decode_length), tf.logical_not(bound_is_met)) inner_shape = tf.TensorShape([None, None, None]) state_struc = nest.map_structure(utils.get_state_shape_invariants, states) (_, alive_seq, alive_log_probs, finished_seq, finished_scores, finished_flags, states) = tf.while_loop( _is_finished, inner_loop, [ tf.constant(0), alive_seq, alive_log_probs, finished_seq, finished_scores, finished_flags, states ], shape_invariants=[ tf.TensorShape([]), inner_shape, alive_log_probs.get_shape(), inner_shape, finished_scores.get_shape(), finished_flags.get_shape(), state_struc ], parallel_iterations=1, back_prop=False) alive_seq.set_shape((None, beam_size, None)) finished_seq.set_shape((None, beam_size, None)) finished_seq = tf.where(tf.reduce_any(finished_flags, 1), finished_seq, alive_seq) finished_scores = tf.where(tf.reduce_any(finished_flags, 1), finished_scores, alive_log_probs) return finished_seq, finished_scores, states