Example #1
0
# setting initial conditions
init_array = np.ones(NCELLS) * density
init_values = dict()
init_values["H_1"] = (1 - X) * init_array
init_values['H_2'] = X * init_array
init_values['H_m0'] = init_array * tiny
init_values['He_1'] = init_array * tiny
init_values['He_2'] = init_array * tiny
init_values['He_3'] = init_array * tiny
init_values['H2_1'] = init_array * tiny
init_values['H2_2'] = init_array * tiny
init_values['de'] = init_array * 0.0

# update and calculate electron density and etc with the handy functions
total_density = primordial.calculate_total_density(init_values)
init_values = primordial.convert_to_mass_density(init_values)
init_values['de'] = primordial.calculate_free_electrons(init_values)
init_values['density'] = primordial.calculate_total_density(init_values)
number_density = primordial.calculate_number_density(init_values)

# set up initial temperatures values used to define ge
init_values['T'] = temperature

# calculate ge (very crudely, no H2 help here)
gamma = 5.0 / 3.0
init_values['ge'] = ((temperature * number_density * kboltz) /
                     (init_values['density'] * mh * (gamma - 1)))

# Write the initial conditions file
# IF you need to use the Makefile, and c-library
# you will have to specified the library_path
Example #2
0
    print(s, type(s))

if start_neutral:
    for s in ion_by_ion.required_species:
        if getattr(s, 'free_electrons', -1) == 0:
            init_values[s.name] = init_array.copy()
        else:
            init_values[s.name] = X * init_array
        # Scale to solar abundances
        if s.name not in ['de', 'ge']:
            ion_name = s.name.lower()
            ion = ch.ion(ion_name, temperature=init_values['T'])
            init_values[s.name] *= ion.Abundance

    init_values['de'][:] = 1e-30
    init_values = ion_by_ion.convert_to_mass_density(init_values)
else:
    # start CIE

    for s in sorted(ion_by_ion.required_species):
            if s.name != 'ge':
                if s.name == 'de':
                    continue
                else:
                    ion_name = s.name.lower()
                    ion = ch.ion(ion_name, temperature=init_values['T'])
                    print(ion_name)
                    ion.ioneqOne()
                    # this calcuate the equilirbium abundance @ T
                    # however this attr is not defined for fully ionized species...
                    # fix that later, take this as 1 for now first
Example #3
0
init_array = np.ones(NCELLS) * density
init_values = dict()
init_values['OII'] = X * init_array
init_values['OIII'] = init_array * X
init_values['OIV'] = init_array * X
init_values['OV'] = init_array * X
init_values['OVI'] = init_array * X
init_values['OVII'] = init_array * X
init_values['OVIII'] = init_array * X
init_values['OIX'] = init_array * X
init_values['de'] = init_array * 0.0

total_density = oxygen.calculate_total_density(init_values, ("OI", ))
init_values["OI"] = init_array.copy() - total_density
init_values = oxygen.convert_to_mass_density(init_values)
init_values['de'] = oxygen.calculate_free_electrons(init_values)
init_values['density'] = oxygen.calculate_total_density(init_values)
number_density = oxygen.calculate_number_density(init_values)

# set up initial temperatures values used to define ge
init_values['T'] = temperature

# calculate ge (very crudely, no H2 help here)
gamma = 5.0 / 3.0
init_values['ge'] = ((temperature * number_density * kboltz) /
                     (init_values['density'] * mh * (gamma - 1)))

# Write the initial conditions file
oxygen.write_solver("oxygen", output_dir=".")
Example #4
0
init_values['I2_1'] = 8.0e-8 * init_array * (126 * 2)
init_values['H2O_1'] = 1.0 * init_array * (18)

init_values['HOIO_1'] = 9.0e-11 * init_array * (126 + 32 + 1)
init_values['IO3m_0'] = 0.01 * init_array * (1 + 16 * 3)
init_values['O2_1'] = 2.5e3 * init_array * (16 * 2)
init_values['CH2_COOH2_1'] = 0.0015 * init_array * (12 + 2 +
                                                    (12 + 16 * 2 + 1) * 2)
init_values['CHI_COOH2_1'] = 1.0e-20 * init_array * (12 + 126 +
                                                     (12 + 16 * 2 + 1) * 2)
init_values["H2O2_1"] = 0.33 * init_array * (2 + 16) * 2

print(new.required_species)

total_density = new.calculate_total_density(init_values)
init_values = new.convert_to_mass_density(init_values)
init_values['de'] = new.calculate_free_electrons(init_values)
init_values['density'] = init_array  # new.calculate_total_density(init_values)
number_density = new.calculate_number_density(init_values)

# set up initial temperatures values used to define ge
init_values['T'] = temperature

# calculate ge (very crudely, no H2 help here)
gamma = 5.0 / 3.0
init_values['ge'] = ((temperature * number_density * kboltz) /
                     (init_values['density'] * mh * (gamma - 1)))

# Write the initial conditions file
# IF you need to use the Makefile, and c-library
# you will have to specified the library_path
Example #5
0
init_array = np.ones(NCELLS) * density
init_values = dict()
init_values['us_H_1'] = init_array * X
init_values['us_H2_1'] = init_array * X
init_values['us_e_0'] = init_array * 0.0

print(init_values)
#print sorted(umist.reactions.values())

for species in umist.required_species:
    if species.name not in init_values:
        init_values[species.name] = init_array * 0.0

total_density = umist.calculate_total_density(init_values)
init_values = umist.convert_to_mass_density(init_values)
init_values['us_e_0'] = umist.calculate_free_electrons(init_values)
init_values['density'] = umist.calculate_total_density(init_values)
number_density = umist.calculate_number_density(init_values)

# set up initial temperatures values used to define ge
init_values['T'] = temperature

# calculate ge (very crudely, no H2 help here)
gamma = 5.0 / 3.0
init_values['ge'] = ((temperature * number_density * kboltz) /
                     (init_values['density'] * mh * (gamma - 1)))

print(init_values)

import pdb
Example #6
0
start_neutral = False

if start_neutral:
    init_values['OII'] = X * init_array
    init_values['OIII'] = init_array * X
    init_values['OIV'] = init_array * X
    init_values['OV'] = init_array * X
    init_values['OVI'] = init_array * X
    init_values['OVII'] = init_array * X
    init_values['OVIII'] = init_array * X
    init_values['OIX'] = init_array * X
    init_values['de'] = init_array * 0.0

    total_density = combined.calculate_total_density(init_values, ("OI", ))
    init_values["OI"] = init_array.copy() - total_density
    init_values = combined.convert_to_mass_density(init_values)
else:
    # start CIE
    import chianti.core as ch
    import chianti.util as chu

    for s in sorted(combined.required_species):
        if s.name != 'ge':
            if s.name == 'de':
                continue
            else:
                print s.name, s.number, s.free_electrons + 1
                ion_name = chu.zion2name(np.int(s.number),
                                         np.int(s.free_electrons + 1))
                ion = ch.ion(ion_name, temperature=init_values['T'])
                ion.ioneqOne()