def extract_DenseNet(path):
    import densenet
    from keras.preprocessing import image
    import numpy as np
    img = image.load_img(path, target_size=(224, 224))
    x = image.img_to_array(img)
    img_tensor = densenet.preprocess_input(np.expand_dims(x, axis=0))
    image_dim = (224, 224, 3)
    DenseNet_model = densenet.DenseNetImageNet161(input_shape=image_dim,
                                                  include_top=False)
    DenseNet_output = DenseNet_model.predict(img_tensor)
    return DenseNet_output
Example #2
0
def cnn_model():
    input_tensor = Input(shape=(params.target_img_size[0],params.target_img_size[1],params.num_channels))
    baseModel = densenet.DenseNetImageNet161(input_shape=(params.target_img_size[0], params.target_img_size[1], params.num_channels), include_top=False, input_tensor=input_tensor)
    modelStruct = baseModel.layers[-1].output

    modelStruct = Dense(params.cnn_last_layer_length, activation='relu', name='fc1')(modelStruct)
    modelStruct = Dropout(0.5)(modelStruct)
    modelStruct = Dense(params.cnn_last_layer_length, activation='relu', name='fc2')(modelStruct)
    modelStruct = Dropout(0.5)(modelStruct)
    predictions = Dense(params.num_labels, activation='softmax')(modelStruct)
    model = Model(inputs=[baseModel.input], outputs=predictions)

    for i,layer in enumerate(model.layers[-5:]):
        layer.trainable = True
    for i,layer in enumerate(model.layers[:-5]):
        layer.trainable = False

    return model
    https://github.com/titu1994/DenseNet

The imported |densenet| library is from this repo.
This script was RUN IN THAT REPO, and the files moved over.
"""

import densenet
import keras
from keras.models import Model
import json

image_dim = (224, 224, 3)  # Tensorflow backend
print("Image dimensions set to %s." % str(image_dim))

print("Loading denseNet model...")
densenet_model = densenet.DenseNetImageNet161(input_shape=image_dim,
                                              include_top=False)

print("Extracting a subset of denseNet to use as an encoder.")
n_final_layer = 393
print("Final layer is %d." % n_final_layer)

inp = densenet_model.input

res56 = densenet_model.layers[49]
print("res56 layer is %s" % str(res56))
out_res56 = res56.output

res28 = densenet_model.layers[137]
print("res28 layer is %s" % str(res28))
out_res28 = res28.output
Example #4
0
def get_cnn_model(params):
    """
    Load base CNN model and add metadata fusion layers if 'use_metadata' is set in params.py
    :param params: global parameters, used to find location of the dataset and json file
    :return model: CNN model with or without depending on params
    """

    input_tensor = Input(shape=(params.target_img_size[0],
                                params.target_img_size[1],
                                params.num_channels))
    baseModel = densenet.DenseNetImageNet161(
        input_shape=(params.target_img_size[0], params.target_img_size[1],
                     params.num_channels),
        include_top=False,
        input_tensor=input_tensor)

    modelStruct = baseModel.layers[-1].output

    if params.use_nlm:
        modelStruct = baseModel.layers[-2].output
        modelStruct = non_local_block(modelStruct,
                                      computation_compression=1,
                                      mode='embedded')
        modelStruct = Conv2D(params.cnn_lstm_layer_length, [3, 3],
                             name='conv_nlm')(modelStruct)
        modelStruct = Flatten()(modelStruct)
        modelStruct = Dense(params.cnn_lstm_layer_length,
                            activation='relu',
                            name='fc_nlm')(modelStruct)
        modelStruct = Dropout(0.5)(modelStruct)

    if params.use_spp:
        modelStruct = baseModel.layers[-2].output
        modelStruct = SpatialPyramidPooling([1, 2, 4], name='spp')(modelStruct)
        modelStruct = Dense(params.cnn_lstm_layer_length,
                            activation='relu',
                            name='fc_spp')(modelStruct)
        modelStruct = Dropout(0.5)(modelStruct)

    if params.use_deform:
        modelStruct = baseModel.layers[-2].output
        modelStruct = ConvOffset2D(params.cnn_lstm_layer_length,
                                   name='deform')(modelStruct)
        modelStruct = Conv2D(params.cnn_lstm_layer_length, [3, 3],
                             name='conv_deform')(modelStruct)
        modelStruct = Flatten()(modelStruct)
        modelStruct = Dense(params.cnn_lstm_layer_length,
                            activation='relu',
                            name='fc_deform')(modelStruct)
        modelStruct = Dropout(0.5)(modelStruct)

    if params.use_metadata:
        auxiliary_input = Input(shape=(params.metadata_length, ),
                                name='aux_input')
        modelStruct = merge([modelStruct, auxiliary_input], 'concat')

    modelStruct = Dense(params.cnn_last_layer_length,
                        activation='relu',
                        name='fc1')(modelStruct)
    modelStruct = Dropout(0.5)(modelStruct)
    modelStruct = Dense(params.cnn_last_layer_length,
                        activation='relu',
                        name='fc2')(modelStruct)
    modelStruct = Dropout(0.5)(modelStruct)
    predictions = Dense(params.num_labels, activation='softmax')(modelStruct)

    if not params.use_metadata:
        model = Model(input=[baseModel.input], output=predictions)
    else:
        model = Model(input=[baseModel.input, auxiliary_input],
                      output=predictions)

    for i, layer in enumerate(model.layers):
        layer.trainable = True

    return model
        bn_weights[-1][1] = v_w[1]
        continue

    v = f[name]
    v_w = v[v.attrs['weight_names'][0]][:]
    conv_weights.append(v_w)

count_layers = 1 # for dense matrix
count_layers += len(conv_weights)
count_layers += len(bn_weights)

print('Copying %d weights. (%d layers)' % (count_layers, count_layers // 2))

import densenet

model = densenet.DenseNetImageNet161((224, 224, 3), weights=None)

conv_layer_ids = []
bn_layer_ids = []

for i, layer in enumerate(model.layers):
    if layer.__class__.__name__ == 'Input':
        continue

    if layer.__class__.__name__ == 'Activation':
        continue

    if layer.__class__.__name__ == 'MaxPooling2D':
        continue

    if layer.__class__.__name__ == 'AveragePooling2D':