Example #1
0
def F_M(T, B, J, gJ, TC, lamb, Nm):
    """Magnetic free energy of 1 spin.

    Parameters
    ----------
    T : 2D array
        Temepratures.
    B : 2D array
        Magnetic fields.
    J : scalar
        Total angular momentum.
    gJ : scalar
        Landé g-factor.
    TC : scalar
        Curie temperature.
    lamb : scalar
        Value of the strength of the parameter of the Molecular Field.
    Nm : scalar
        Number of spins.

    Returns
    -------
    y : 2D array
        Magnetic free energy.
    """
    h = B / (lamb * Nm * gJ * mu_B * J
             )  # relative field to the saturation magnetization
    sigma = mag.Brillouin(T, B, J, gJ, TC, lamb, Nm)  # reduced magnetization
    y = 3. * J / (J + 1.) * (h + sigma) * TC / T
    A = np.sinh((2. * J + 1.) * y / (2. * J))
    B = np.sinh(y / (2. * J))

    return -T * k_B * np.log(A / B)  # magnetic free energy of 1 spin
Example #2
0
def S_M(T, B, J, gJ, TC, lamb, Nm):
    """Computes the magnetic entropy for 1 spin.

    Parameters
    ----------
    T : scalar, 2D array
        Temperatures.
    B : scalar, 2D array
        Magnetic fields.
    J : scalar
        Angular momentum.
    TC : scalar
        Curie temperature.
    lamb : scalar
        Value of the strength of the parameter of the Molecular Field.

    Returns
    -------
    y : scalar, 2D array
        Magnetic entropy.
    """
    h = B / (lamb * Nm * gJ * mu_B * J
             )  # relative field to the saturation magnetization

    sigma = mag.Brillouin(T, B, J, gJ, TC, lamb, Nm)  # reduced magnetization

    y = 3. * J / (J + 1.) * (h + sigma) * TC / T  # temporary variable

    A = np.sinh((2. * J + 1.) * y / (2. * J))
    B = np.sinh(y / (2. * J))

    return k_B * (np.log(A / B) - sigma * y)
Example #3
0
def F_M_vs_M(sigma, T, B, J, gJ, TC, lamb, Nm):
    """Magnetic Free Energy as a functio of Reduced Magnetization.

    Parameters
    ----------
    sigma : scalar, 1D array
        Reduced Magnetization.
    T : scalar
        Temperature.
    B : scalar
        Applied Magnetic Field.
    J : scalar
        Total Angular Momentum.
    TC : scalar
        Curie Temperature.
    lamb : scalar
        Value of the strength of the parameter of the Molecular Field.

    Returns
    --------
    y : scalar, array
        Magnetic Free Energy
    """
    def f(sigma, T, B, J, TC, lamb):
        A = np.sinh(3. / (2. * (J + 1.)) *
                    (B / (lamb * Nm * gJ * mu_B * J) + sigma) * TC / T)
        B = np.sinh(3. * (2. * J + 1.) / (2. * (J + 1.)) *
                    (B / (lamb * Nm * gJ * mu_B * J) + sigma) * TC / T)

        return (sigma**2.) / 2. + (J + 1.) / (3. * J) * T / TC * np.log(A / B)

    # reduced magnetization of absolute minimum
    sigma0 = mag.Brillouin(T, B, J, gJ, TC, lamb, Nm)

    h = B / (lamb * Nm * gJ * mu_B * J
             )  # relative field to the saturation magnetization
    y = 3. * J / (J + 1.) * (h + sigma0) * TC / T
    C = np.sinh((2. * J + 1.) * y / (2. * J))
    D = np.sinh(y / (2. * J))
    F0 = -k_B * T * np.log(C / D)  # value of free energy at absolute minimum

    return f(sigma, T, B, J, TC, lamb) - f(sigma0, T, B, J, TC, lamb) + F0
Example #4
0
def F2(T, B, J, gJ, TC, lamb, Nm, theta_D, N, F0):
    """Total free energy as a functions of temperature and magnetic field
    in the unit cell. (Less efficient than function F)

    Parameters
    ---------
    T : 2D array
        Temperatures.
    B : 2D array
        Magnetic fields.
    J : scalar
        Total angular momentum.
    theta_D : scalar
        Debye temperature.
    F0 : scalar
        Electronic free enery at 0 K.
    lamb : scalar
        Value of the strength of the parameter of the Molecular Field.

    Returns
    -------
    y : 2D array
        Total free energy.
    """
    sigma = mag.Brillouin(T, B, J, TC, lamb)  # reduced magnetization

    s_M = ent.S_M(T, B, J, TC, lamb)  # magnetic entropy from MFT

    s_L = ent.S_L(T[0], theta_D)  # lattice entropy from Debye model
    # turn array into a matrix with equal rows for matrix multiplication
    s_L = s_L * np.ones(np.shape(T))

    f0 = F0 * np.ones(T.shape)
    # offset of free energies tomake F start at 0 with no magnetic field
    F_0 = Nm * (3. * J / (J + 1.) * k_B * TC) + f0

    return F_0 + Nm * (-gJ * mu_B * J * B * sigma - 3. * J /
                       (J + 1.) * k_B * TC *
                       (sigma**2.) - T * s_M) - N * T * s_L
Example #5
0
def plt_M(MvsT=0,
          MvsB=0,
          MvsTB=0,
          UvsT=0,
          M_hys_vs_T=0,
          save=0,
          TT=None,
          BB=None,
          J1=None,
          J2=None,
          TC1=None,
          TC2=None,
          lamb1=None,
          lamb2=None,
          Delta_T=None,
          Delta_B=None,
          theta_D1=None,
          theta_D2=None,
          gJ=None,
          F01=None,
          F02=None,
          Nm=None,
          N=None):
    """Menu for the magnetization plots.

    Parameters
    ----------
    MvsT : bool
        Plots the magnetization vs temperature.
    MvsB : bool
        Plots the magnetization vs magnetic field.
    MvsTB : bool
        Plots the magnetization vs temperature and magnetic field.
    UvsT : bool
        Plots the internal energy vs temperature.
    M_hys_vs_T : bool
        Plots the hysteresis of the magnetization vs tempeperature, magnetic
        field and both.
    """
    print('Magnetization')

    if MvsT or MvsB or MvsTB or UvsT:
        # magnetization of phase 1
        sig_1 = mag.Brillouin(TT, BB, J1, gJ, TC1, lamb1, Nm)
        # magnetization of phase 2
        sig_2 = mag.Brillouin(TT, BB, J2, gJ, TC2, lamb2, Nm)
        # magnetization of stable phase
        sig_stable = mag.Brillouin_stable(TT, BB, J1, J2, TC1, TC2, lamb1,
                                          lamb2, theta_D1, theta_D2, F01, F02,
                                          gJ, Nm, N)
        if MvsT:  # plot of M vs T
            plt_M_vs_T(Delta_T,
                       Delta_B,
                       sig_1,
                       sig_2,
                       sig_stable,
                       Bstep=1,
                       save=save)

        if MvsB:  # plot of M vs B
            plt_M_vs_B(Delta_T,
                       Delta_B,
                       sig_1,
                       sig_2,
                       sig_stable,
                       Tstep=1,
                       save=save)

        if MvsTB:  # plot of M vs T and B
            plt_M_vs_TB(Delta_T, Delta_B, sig_stable)

        if UvsT:  # plot of U vs T
            plt_U_vs_T(Delta_T,
                       Delta_B,
                       sig_1,
                       sig_2,
                       Bstep=1,
                       save=save,
                       BB=BB,
                       J1=J1,
                       J2=J2,
                       gJ=gJ,
                       TC1=TC1,
                       TC2=TC2)

    if M_hys_vs_T:
        # magnetization on heating
        sig_heat = mag.RedMag_heat(TT, BB, J1, TC1, lamb1, theta_D1, F01, J2,
                                   TC2, lamb2, theta_D2, F02, gJ, Nm, N)
        # magnetization on cooling
        sig_cool = mag.RedMag_cool(TT, BB, J1, TC1, lamb1, theta_D1, F01, J2,
                                   TC2, lamb2, theta_D2, F02, gJ, Nm, N)

        # plot of magnetic hysteresis vs T
        plt_M_hys_vs_T(Delta_T,
                       Delta_B,
                       sig_heat,
                       sig_cool,
                       Bstep=1,
                       save=save)
        # plot of magnetic hysteresus vs B
        plt_M_hys_vs_B(Delta_T,
                       Delta_B,
                       sig_heat,
                       sig_cool,
                       Tstep=1,
                       save=save)
        # plot of magnetic hysteresis vs T and B
        plt_M_hys_vs_TB(Delta_T, Delta_B, sig_heat, sig_cool)

    return None