def search_location(now_ts, uid): date = ts2datetime(now_ts) #print 'date:', date ts = datetime2ts(date) #print 'date-ts:', ts stat_results = dict() results = dict() for i in range(1, 8): ts = ts - 24 * 3600 #print 'for-ts:', ts result_string = r_cluster.hget('ip_' + str(ts), str(uid)) if not result_string: continue result_dict = json.loads(result_string) for ip in result_dict: try: stat_results[ip] += result_dict[ip] except: stat_results[ip] = result_dict[ip] for ip in stat_results: city = ip2city(ip) if city: try: results[city][ip] = stat_results[ip] except: results[city] = {ip: stat_results[ip]} description = active_geo_description(results) results['description'] = description #print 'location results:', results return results
def search_attribute_portrait(uid): return_results = {} index_name = "sensitive_user_portrait" index_type = "user" try: search_result = es.get(index=index_name, doc_type=index_type, id=uid) except: return None results = search_result['_source'] #return_results = results user_sensitive = user_type(uid) if user_sensitive: #return_results.update(sensitive_attribute(uid)) return_results['user_type'] = 1 return_results['sensitive'] = 1 else: return_results['user_type'] = 0 return_results['sensitive'] = 0 if results['photo_url'] == 0: results['photo_url'] = 'unknown' if results['location'] == 0: results['location'] = 'unknown' return_results['photo_url'] = results['photo_url'] return_results['uid'] = results['uid'] return_results['uname'] = results['uname'] if return_results['uname'] == 0: return_results['uname'] = 'unknown' return_results['location'] = results['location'] return_results['fansnum'] = results['fansnum'] return_results['friendsnum'] = results['friendsnum'] return_results['gender'] = results['gender'] return_results['psycho_status'] = json.loads(results['psycho_status']) keyword_list = [] if results['keywords']: keywords_dict = json.loads(results['keywords']) sort_word_list = sorted(keywords_dict.items(), key=lambda x: x[1], reverse=True) return_results['keywords'] = sort_word_list else: return_results['keywords'] = [] return_results['retweet'] = search_retweet(uid, 0) return_results['follow'] = search_follower(uid, 0) return_results['at'] = search_mention(uid, 0) if results['ip'] and results['geo_activity']: ip_dict = json.loads(results['ip']) geo_dict = json.loads(results['geo_activity']) geo_description = active_geo_description(ip_dict, geo_dict) return_results['geo_description'] = geo_description else: return_results['geo_description'] = '' geo_top = [] temp_geo = {} if results['geo_activity']: geo_dict = json.loads(results['geo_activity']) if len(geo_dict) < 7: ts = time.time() ts = datetime2ts('2013-09-08') - 8 * 24 * 3600 for i in range(7): ts = ts + 24 * 3600 date = ts2datetime(ts).replace('-', '') if geo_dict.has_key(date): pass else: geo_dict[date] = {} activity_geo_list = sorted(geo_dict.items(), key=lambda x: x[0], reverse=False) geo_list = geo_dict.values() for k, v in activity_geo_list: sort_v = sorted(v.items(), key=lambda x: x[1], reverse=True) top_geo = [item[0] for item in sort_v] geo_top.append([k, top_geo[0:2]]) for iter_key in v.keys(): if temp_geo.has_key(iter_key): temp_geo[iter_key] += v[iter_key] else: temp_geo[iter_key] = v[iter_key] sort_geo_dict = sorted(temp_geo.items(), key=lambda x: x[1], reverse=True) return_results['top_activity_geo'] = sort_geo_dict return_results['activity_geo_distribute'] = geo_top else: return_results['top_activity_geo'] = [] return_results['activity_geo_distribute'] = geo_top hashtag_dict = get_user_hashtag(uid)[0] return_results['hashtag'] = hashtag_dict ''' emotion_result = {} emotion_conclusion_dict = {} if results['emotion_words']: emotion_words_dict = json.loads(results['emotion_words']) for word_type in emotion_mark_dict: try: word_dict = emotion_words_dict[word_type] if word_type=='126' or word_type=='127': emotion_conclusion_dict[word_type] = word_dict sort_word_dict = sorted(word_dict.items(), key=lambda x:x[1], reverse=True) word_list = sort_word_dict[:5] except: results['emotion_words'] = emotion_result emotion_result[emotion_mark_dict[word_type]] = word_list return_results['emotion_words'] = emotion_result ''' # topic if results['topic']: topic_dict = json.loads(results['topic']) sort_topic_dict = sorted(topic_dict.items(), key=lambda x: x[1], reverse=True) return_results['topic'] = sort_topic_dict[:5] else: return_results['topic'] = [] # domain if results['domain']: domain_string = results['domain'] domain_list = domain_string.split('_') return_results['domain'] = domain_list else: return_results['domain'] = [] ''' # emoticon if results['emotion']: emotion_dict = json.loads(results['emotion']) sort_emotion_dict = sorted(emotion_dict.items(), key=lambda x:x[1], reverse=True) return_results['emotion'] = sort_emotion_dict[:5] else: return_results['emotion'] = [] ''' # on_line pattern if results['online_pattern']: online_pattern_dict = json.loads(results['online_pattern']) sort_online_pattern_dict = sorted(online_pattern_dict.items(), key=lambda x: x[1], reverse=True) return_results['online_pattern'] = sort_online_pattern_dict[:5] else: return_results['online_pattern'] = [] ''' #psycho_feature if results['psycho_feature']: psycho_feature_list = results['psycho_feature'].split('_') return_results['psycho_feature'] = psycho_feature_list else: return_results['psycho_feature'] = [] ''' # self_state try: profile_result = es_user_profile.get(index='weibo_user', doc_type='user', id=uid) self_state = profile_result['_source'].get('description', '') return_results['description'] = self_state except: return_results['description'] = '' if results['importance']: query_body = { 'query': { 'range': { 'importance': { 'from': results['importance'], 'to': 100000 } } } } importance_rank = es.count(index='sensitive_user_portrait', doc_type='user', body=query_body) if importance_rank['_shards']['successful'] != 0: return_results['importance_rank'] = importance_rank['count'] else: return_results['importance_rank'] = 0 else: return_results['importance_rank'] = 0 return_results['importance'] = results['importance'] if results['activeness']: query_body = { 'query': { 'range': { 'activeness': { 'from': results['activeness'], 'to': 10000 } } } } activeness_rank = es.count(index='sensitive_user_portrait', doc_type='user', body=query_body) print activeness_rank if activeness_rank['_shards']['successful'] != 0: return_results['activeness_rank'] = activeness_rank['count'] else: return_results['activeness_rank'] = 0 else: return_results['activeness_rank'] = 0 return_results['activeness'] = results['activeness'] if results['influence']: query_body = { 'query': { 'range': { 'influence': { 'from': results['influence'], 'to': 100000 } } } } influence_rank = es.count(index='sensitive_user_portrait', doc_type='user', body=query_body) if influence_rank['_shards']['successful'] != 0: return_results['influence_rank'] = influence_rank['count'] else: return_results['influence_rank'] = 0 else: return_results['influence_rank'] = 0 return_results['influence'] = results['influence'] if results['sensitive']: query_body = { 'query': { 'range': { 'sensitive': { 'from': results['sensitive'], 'to': 100000 } } } } influence_rank = es.count(index='sensitive_user_portrait', doc_type='user', body=query_body) if influence_rank['_shards']['successful'] != 0: return_results['sensitive_rank'] = influence_rank['count'] else: return_results['sensitive_rank'] = 0 else: return_results['sensitive_rank'] = 0 return_results['sensitive'] = results['sensitive'] query_body = {'query': {"match_all": {}}} all_count = es.count(index='sensitive_user_portrait', doc_type='user', body=query_body) if all_count['_shards']['successful'] != 0: return_results['all_count'] = all_count['count'] else: print 'es_sensitive_user_portrait error' return_results['all_count'] = 0 # link link_ratio = results['link'] return_results['link'] = link_ratio weibo_trend = get_user_trend(uid)[0] return_results['time_description'] = active_time_description(weibo_trend) return_results['time_trend'] = weibo_trend # user influence trend influence_detail = [] influence_value = [] attention_value = [] ts = time.time() ts = datetime2ts('2013-09-08') - 8 * 24 * 3600 for i in range(1, 8): date = ts2datetime(ts + i * 24 * 3600).replace('-', '') detail = [0] * 10 try: item = es.get(index=date, doc_type='bci', id=uid)['_source'] ''' if return_results['utype']: detail[0] = item.get('s_origin_weibo_number', 0) detail[1] = item.get('s_retweeted_weibo_number', 0) detail[2] = item.get('s_origin_weibo_retweeted_total_number', 0) + item.get('s_retweeted_weibo_retweeted_total_number', 0) detail[3] = item.get('s_origin_weibo_comment_total_number', 0) + item.get('s_retweeted_weibo_comment_total_number', 0) else: ''' if 1: detail[0] = item.get('origin_weibo_number', 0) detail[1] = item.get('retweeted_weibo_number', 0) detail[2] = item.get( 'origin_weibo_retweeted_total_number', 0) + item.get( 'retweeted_weibo_retweeted_total_number', 0) detail[3] = item.get( 'origin_weibo_comment_total_number', 0) + item.get( 'retweeted_weibo_comment_total_number', 0) retweeted_id = item.get('origin_weibo_top_retweeted_id', '0') detail[4] = retweeted_id if retweeted_id: try: detail[5] = es.get(index='sensitive_user_text', doc_type='user', id=retweeted_id)['_source']['text'] except: detail[5] = '' else: detail[5] = '' detail[6] = item.get('origin_weibo_retweeted_top_number', 0) detail[7] = item.get('origin_weibo_top_comment_id', '0') if detail[7]: try: detail[8] = es.get(index='sensitive_user_text', doc_type='user', id=detail[7])['_source']['text'] except: detail[8] = '' else: detail[8] = '' detail[9] = item.get('origin_weibo_comment_top_number', 0) attention_number = detail[2] + detail[3] attention = 2 / (1 + math.exp(-0.005 * attention_number)) - 1 influence_value.append([date, item['user_index']]) influence_detail.append([date, detail]) attention_value.append(attention) except: influence_value.append([date, 0]) influence_detail.append([date, detail]) attention_value.append(0) return_results['influence_trend'] = influence_value return_results['common_influence_detail'] = influence_detail return_results['attention_degree'] = attention_value return return_results
def search_attribute_portrait(uid): return_results = {} index_name = "sensitive_user_portrait" index_type = "user" try: search_result = es.get(index=index_name, doc_type=index_type, id=uid) except: return None results = search_result['_source'] #return_results = results user_sensitive = user_type(uid) if user_sensitive: #return_results.update(sensitive_attribute(uid)) return_results['user_type'] = 1 return_results['sensitive'] = 1 else: return_results['user_type'] = 0 return_results['sensitive'] = 0 if results['photo_url'] == 0: results['photo_url'] = 'unknown' if results['location'] == 0: results['location'] = 'unknown' return_results['photo_url'] = results['photo_url'] return_results['uid'] = results['uid'] return_results['uname'] = results['uname'] if return_results['uname'] == 0: return_results['uname'] = 'unknown' return_results['location'] = results['location'] return_results['fansnum'] = results['fansnum'] return_results['friendsnum'] = results['friendsnum'] return_results['gender'] = results['gender'] return_results['psycho_status'] = json.loads(results['psycho_status']) keyword_list = [] if results['keywords']: keywords_dict = json.loads(results['keywords']) sort_word_list = sorted(keywords_dict.items(), key=lambda x:x[1], reverse=True) return_results['keywords'] = sort_word_list else: return_results['keywords'] = [] return_results['retweet'] = search_retweet(uid, 0) return_results['follow'] = search_follower(uid, 0) return_results['at'] = search_mention(uid, 0) if results['ip'] and results['geo_activity']: ip_dict = json.loads(results['ip']) geo_dict = json.loads(results['geo_activity']) geo_description = active_geo_description(ip_dict, geo_dict) return_results['geo_description'] = geo_description else: return_results['geo_description'] = '' geo_top = [] temp_geo = {} if results['geo_activity']: geo_dict = json.loads(results['geo_activity']) if len(geo_dict) < 7: ts = time.time() ts = datetime2ts('2013-09-08') - 8*24*3600 for i in range(7): ts = ts + 24*3600 date = ts2datetime(ts).replace('-', '') if geo_dict.has_key(date): pass else: geo_dict[date] = {} activity_geo_list = sorted(geo_dict.items(), key=lambda x:x[0], reverse=False) geo_list = geo_dict.values() for k,v in activity_geo_list: sort_v = sorted(v.items(), key=lambda x:x[1], reverse=True) top_geo = [item[0] for item in sort_v] geo_top.append([k, top_geo[0:2]]) for iter_key in v.keys(): if temp_geo.has_key(iter_key): temp_geo[iter_key] += v[iter_key] else: temp_geo[iter_key] = v[iter_key] sort_geo_dict = sorted(temp_geo.items(), key=lambda x:x[1], reverse=True) return_results['top_activity_geo'] = sort_geo_dict return_results['activity_geo_distribute'] = geo_top else: return_results['top_activity_geo'] = [] return_results['activity_geo_distribute'] = geo_top hashtag_dict = get_user_hashtag(uid)[0] return_results['hashtag'] = hashtag_dict ''' emotion_result = {} emotion_conclusion_dict = {} if results['emotion_words']: emotion_words_dict = json.loads(results['emotion_words']) for word_type in emotion_mark_dict: try: word_dict = emotion_words_dict[word_type] if word_type=='126' or word_type=='127': emotion_conclusion_dict[word_type] = word_dict sort_word_dict = sorted(word_dict.items(), key=lambda x:x[1], reverse=True) word_list = sort_word_dict[:5] except: results['emotion_words'] = emotion_result emotion_result[emotion_mark_dict[word_type]] = word_list return_results['emotion_words'] = emotion_result ''' # topic if results['topic']: topic_dict = json.loads(results['topic']) sort_topic_dict = sorted(topic_dict.items(), key=lambda x:x[1], reverse=True) return_results['topic'] = sort_topic_dict[:5] else: return_results['topic'] = [] # domain if results['domain']: domain_string = results['domain'] domain_list = domain_string.split('_') return_results['domain'] = domain_list else: return_results['domain'] = [] ''' # emoticon if results['emotion']: emotion_dict = json.loads(results['emotion']) sort_emotion_dict = sorted(emotion_dict.items(), key=lambda x:x[1], reverse=True) return_results['emotion'] = sort_emotion_dict[:5] else: return_results['emotion'] = [] ''' # on_line pattern if results['online_pattern']: online_pattern_dict = json.loads(results['online_pattern']) sort_online_pattern_dict = sorted(online_pattern_dict.items(), key=lambda x:x[1], reverse=True) return_results['online_pattern'] = sort_online_pattern_dict[:5] else: return_results['online_pattern'] = [] ''' #psycho_feature if results['psycho_feature']: psycho_feature_list = results['psycho_feature'].split('_') return_results['psycho_feature'] = psycho_feature_list else: return_results['psycho_feature'] = [] ''' # self_state try: profile_result = es_user_profile.get(index='weibo_user', doc_type='user', id=uid) self_state = profile_result['_source'].get('description', '') return_results['description'] = self_state except: return_results['description'] = '' if results['importance']: query_body = { 'query':{ 'range':{ 'importance':{ 'from':results['importance'], 'to': 100000 } } } } importance_rank = es.count(index='sensitive_user_portrait', doc_type='user', body=query_body) if importance_rank['_shards']['successful'] != 0: return_results['importance_rank'] = importance_rank['count'] else: return_results['importance_rank'] = 0 else: return_results['importance_rank'] = 0 return_results['importance'] = results['importance'] if results['activeness']: query_body = { 'query':{ 'range':{ 'activeness':{ 'from':results['activeness'], 'to': 10000 } } } } activeness_rank = es.count(index='sensitive_user_portrait', doc_type='user', body=query_body) if activeness_rank['_shards']['successful'] != 0: return_results['activeness_rank'] = activeness_rank['count'] else: return_results['activeness_rank'] = 0 else: return_results['activeness_rank'] = 0 return_results['activeness'] = results['activeness'] if results['influence']: query_body = { 'query':{ 'range':{ 'influence':{ 'from':results['influence'], 'to': 100000 } } } } influence_rank = es.count(index='sensitive_user_portrait', doc_type='user', body=query_body) if influence_rank['_shards']['successful'] != 0: return_results['influence_rank'] = influence_rank['count'] else: return_results['influence_rank'] = 0 else: return_results['influence_rank'] = 0 return_results['influence'] = results['influence'] if results['sensitive']: query_body = { 'query':{ 'range':{ 'sensitive':{ 'from':results['sensitive'], 'to': 100000 } } } } influence_rank = es.count(index='sensitive_user_portrait', doc_type='user', body=query_body) if influence_rank['_shards']['successful'] != 0: return_results['sensitive_rank'] = influence_rank['count'] else: return_results['sensitive_rank'] = 0 else: return_results['sensitive_rank'] = 0 return_results['sensitive'] = results['sensitive'] query_body = { 'query':{ "match_all":{} } } all_count = es.count(index='sensitive_user_portrait', doc_type='user', body=query_body) if all_count['_shards']['successful'] != 0: return_results['all_count'] = all_count['count'] else: print 'es_sensitive_user_portrait error' return_results['all_count'] = 0 # link link_ratio = results['link'] return_results['link'] = link_ratio weibo_trend = get_user_trend(uid)[0] return_results['time_description'] = active_time_description(weibo_trend) return_results['time_trend'] = weibo_trend # user influence trend influence_detail = [] influence_value = [] attention_value = [] ts = time.time() ts = datetime2ts('2013-09-08') - 8*24*3600 for i in range(1,8): date = ts2datetime(ts + i*24*3600).replace('-', '') detail = [0]*10 try: item = es.get(index=date, doc_type='bci', id=uid)['_source'] ''' if return_results['utype']: detail[0] = item.get('s_origin_weibo_number', 0) detail[1] = item.get('s_retweeted_weibo_number', 0) detail[2] = item.get('s_origin_weibo_retweeted_total_number', 0) + item.get('s_retweeted_weibo_retweeted_total_number', 0) detail[3] = item.get('s_origin_weibo_comment_total_number', 0) + item.get('s_retweeted_weibo_comment_total_number', 0) else: ''' if 1: detail[0] = item.get('origin_weibo_number', 0) detail[1] = item.get('retweeted_weibo_number', 0) detail[2] = item.get('origin_weibo_retweeted_total_number', 0) + item.get('retweeted_weibo_retweeted_total_number', 0) detail[3] = item.get('origin_weibo_comment_total_number', 0) + item.get('retweeted_weibo_comment_total_number', 0) retweeted_id = item.get('origin_weibo_top_retweeted_id', '0') detail[4] = retweeted_id if retweeted_id: try: detail[5] = es.get(index='sensitive_user_text', doc_type='user', id=retweeted_id)['_source']['text'] except: detail[5] = '' else: detail[5] = '' detail[6] = item.get('origin_weibo_retweeted_top_number', 0) detail[7] = item.get('origin_weibo_top_comment_id', '0') if detail[7]: try: detail[8] = es.get(index='sensitive_user_text', doc_type='user', id=detail[7])['_source']['text'] except: detail[8] = '' else: detail[8] = '' detail[9] = item.get('origin_weibo_comment_top_number', 0) attention_number = detail[2] + detail[3] attention = 2/(1+math.exp(-0.005*attention_number)) - 1 influence_value.append([date, item['user_index']]) influence_detail.append([date, detail]) attention_value.append(attention) except: influence_value.append([date, 0]) influence_detail.append([date, detail]) attention_value.append(0) return_results['influence_trend'] = influence_value return_results['common_influence_detail'] = influence_detail return_results['attention_degree'] = attention_value return return_results
def search_attribute_portrait(uid): return_results = {} index_name = "sensitive_user_portrait" index_type = "user" try: search_result = es.get(index=index_name, doc_type=index_type, id=uid) except: return None results = search_result["_source"] # return_results = results user_sensitive = user_type(uid) if user_sensitive: # return_results.update(sensitive_attribute(uid)) return_results["user_type"] = 1 return_results["sensitive"] = 1 else: return_results["user_type"] = 0 return_results["sensitive"] = 0 if results["photo_url"] == 0: results["photo_url"] = "unknown" if results["location"] == 0: results["location"] = "unknown" return_results["photo_url"] = results["photo_url"] return_results["uid"] = results["uid"] return_results["uname"] = results["uname"] if return_results["uname"] == 0: return_results["uname"] = "unknown" return_results["location"] = results["location"] return_results["fansnum"] = results["fansnum"] return_results["friendsnum"] = results["friendsnum"] return_results["gender"] = results["gender"] return_results["psycho_status"] = json.loads(results["psycho_status"]) keyword_list = [] if results["keywords"]: keywords_dict = json.loads(results["keywords"]) sort_word_list = sorted(keywords_dict.items(), key=lambda x: x[1], reverse=True) return_results["keywords"] = sort_word_list else: return_results["keywords"] = [] return_results["retweet"] = search_retweet(uid, 0) return_results["follow"] = search_follower(uid, 0) return_results["at"] = search_mention(uid, 0) if results["ip"] and results["geo_activity"]: ip_dict = json.loads(results["ip"]) geo_dict = json.loads(results["geo_activity"]) geo_description = active_geo_description(ip_dict, geo_dict) return_results["geo_description"] = geo_description else: return_results["geo_description"] = "" geo_top = [] temp_geo = {} if results["geo_activity"]: geo_dict = json.loads(results["geo_activity"]) if len(geo_dict) < 7: ts = time.time() ts = datetime2ts("2013-09-08") - 8 * 24 * 3600 for i in range(7): ts = ts + 24 * 3600 date = ts2datetime(ts).replace("-", "") if geo_dict.has_key(date): pass else: geo_dict[date] = {} activity_geo_list = sorted(geo_dict.items(), key=lambda x: x[0], reverse=False) geo_list = geo_dict.values() for k, v in activity_geo_list: sort_v = sorted(v.items(), key=lambda x: x[1], reverse=True) top_geo = [item[0] for item in sort_v] geo_top.append([k, top_geo[0:2]]) for iter_key in v.keys(): if temp_geo.has_key(iter_key): temp_geo[iter_key] += v[iter_key] else: temp_geo[iter_key] = v[iter_key] sort_geo_dict = sorted(temp_geo.items(), key=lambda x: x[1], reverse=True) return_results["top_activity_geo"] = sort_geo_dict return_results["activity_geo_distribute"] = geo_top else: return_results["top_activity_geo"] = [] return_results["activity_geo_distribute"] = geo_top hashtag_dict = get_user_hashtag(uid)[0] return_results["hashtag"] = hashtag_dict """ emotion_result = {} emotion_conclusion_dict = {} if results['emotion_words']: emotion_words_dict = json.loads(results['emotion_words']) for word_type in emotion_mark_dict: try: word_dict = emotion_words_dict[word_type] if word_type=='126' or word_type=='127': emotion_conclusion_dict[word_type] = word_dict sort_word_dict = sorted(word_dict.items(), key=lambda x:x[1], reverse=True) word_list = sort_word_dict[:5] except: results['emotion_words'] = emotion_result emotion_result[emotion_mark_dict[word_type]] = word_list return_results['emotion_words'] = emotion_result """ # topic if results["topic"]: topic_dict = json.loads(results["topic"]) sort_topic_dict = sorted(topic_dict.items(), key=lambda x: x[1], reverse=True) return_results["topic"] = sort_topic_dict[:5] else: return_results["topic"] = [] # domain if results["domain"]: domain_string = results["domain"] domain_list = domain_string.split("_") return_results["domain"] = domain_list else: return_results["domain"] = [] """ # emoticon if results['emotion']: emotion_dict = json.loads(results['emotion']) sort_emotion_dict = sorted(emotion_dict.items(), key=lambda x:x[1], reverse=True) return_results['emotion'] = sort_emotion_dict[:5] else: return_results['emotion'] = [] """ # on_line pattern if results["online_pattern"]: online_pattern_dict = json.loads(results["online_pattern"]) sort_online_pattern_dict = sorted(online_pattern_dict.items(), key=lambda x: x[1], reverse=True) return_results["online_pattern"] = sort_online_pattern_dict[:5] else: return_results["online_pattern"] = [] """ #psycho_feature if results['psycho_feature']: psycho_feature_list = results['psycho_feature'].split('_') return_results['psycho_feature'] = psycho_feature_list else: return_results['psycho_feature'] = [] """ # self_state try: profile_result = es_user_profile.get(index="weibo_user", doc_type="user", id=uid) self_state = profile_result["_source"].get("description", "") return_results["description"] = self_state except: return_results["description"] = "" if results["importance"]: query_body = {"query": {"range": {"importance": {"from": results["importance"], "to": 100000}}}} importance_rank = es.count(index="sensitive_user_portrait", doc_type="user", body=query_body) if importance_rank["_shards"]["successful"] != 0: return_results["importance_rank"] = importance_rank["count"] else: return_results["importance_rank"] = 0 else: return_results["importance_rank"] = 0 return_results["importance"] = results["importance"] if results["activeness"]: query_body = {"query": {"range": {"activeness": {"from": results["activeness"], "to": 10000}}}} activeness_rank = es.count(index="sensitive_user_portrait", doc_type="user", body=query_body) print activeness_rank if activeness_rank["_shards"]["successful"] != 0: return_results["activeness_rank"] = activeness_rank["count"] else: return_results["activeness_rank"] = 0 else: return_results["activeness_rank"] = 0 return_results["activeness"] = results["activeness"] if results["influence"]: query_body = {"query": {"range": {"influence": {"from": results["influence"], "to": 100000}}}} influence_rank = es.count(index="sensitive_user_portrait", doc_type="user", body=query_body) if influence_rank["_shards"]["successful"] != 0: return_results["influence_rank"] = influence_rank["count"] else: return_results["influence_rank"] = 0 else: return_results["influence_rank"] = 0 return_results["influence"] = results["influence"] if results["sensitive"]: query_body = {"query": {"range": {"sensitive": {"from": results["sensitive"], "to": 100000}}}} influence_rank = es.count(index="sensitive_user_portrait", doc_type="user", body=query_body) if influence_rank["_shards"]["successful"] != 0: return_results["sensitive_rank"] = influence_rank["count"] else: return_results["sensitive_rank"] = 0 else: return_results["sensitive_rank"] = 0 return_results["sensitive"] = results["sensitive"] query_body = {"query": {"match_all": {}}} all_count = es.count(index="sensitive_user_portrait", doc_type="user", body=query_body) if all_count["_shards"]["successful"] != 0: return_results["all_count"] = all_count["count"] else: print "es_sensitive_user_portrait error" return_results["all_count"] = 0 # link link_ratio = results["link"] return_results["link"] = link_ratio weibo_trend = get_user_trend(uid)[0] return_results["time_description"] = active_time_description(weibo_trend) return_results["time_trend"] = weibo_trend # user influence trend influence_detail = [] influence_value = [] attention_value = [] ts = time.time() ts = datetime2ts("2013-09-08") - 8 * 24 * 3600 for i in range(1, 8): date = ts2datetime(ts + i * 24 * 3600).replace("-", "") detail = [0] * 10 try: item = es.get(index=date, doc_type="bci", id=uid)["_source"] """ if return_results['utype']: detail[0] = item.get('s_origin_weibo_number', 0) detail[1] = item.get('s_retweeted_weibo_number', 0) detail[2] = item.get('s_origin_weibo_retweeted_total_number', 0) + item.get('s_retweeted_weibo_retweeted_total_number', 0) detail[3] = item.get('s_origin_weibo_comment_total_number', 0) + item.get('s_retweeted_weibo_comment_total_number', 0) else: """ if 1: detail[0] = item.get("origin_weibo_number", 0) detail[1] = item.get("retweeted_weibo_number", 0) detail[2] = item.get("origin_weibo_retweeted_total_number", 0) + item.get( "retweeted_weibo_retweeted_total_number", 0 ) detail[3] = item.get("origin_weibo_comment_total_number", 0) + item.get( "retweeted_weibo_comment_total_number", 0 ) retweeted_id = item.get("origin_weibo_top_retweeted_id", "0") detail[4] = retweeted_id if retweeted_id: try: detail[5] = es.get(index="sensitive_user_text", doc_type="user", id=retweeted_id)["_source"][ "text" ] except: detail[5] = "" else: detail[5] = "" detail[6] = item.get("origin_weibo_retweeted_top_number", 0) detail[7] = item.get("origin_weibo_top_comment_id", "0") if detail[7]: try: detail[8] = es.get(index="sensitive_user_text", doc_type="user", id=detail[7])["_source"][ "text" ] except: detail[8] = "" else: detail[8] = "" detail[9] = item.get("origin_weibo_comment_top_number", 0) attention_number = detail[2] + detail[3] attention = 2 / (1 + math.exp(-0.005 * attention_number)) - 1 influence_value.append([date, item["user_index"]]) influence_detail.append([date, detail]) attention_value.append(attention) except: influence_value.append([date, 0]) influence_detail.append([date, detail]) attention_value.append(0) return_results["influence_trend"] = influence_value return_results["common_influence_detail"] = influence_detail return_results["attention_degree"] = attention_value return return_results