Example #1
0
 def __init__(
     self,
     problem: MOProblem,
     selection_operator: Type[SelectionBase] = None,
     population_size: int = None,
     population_params: Dict = None,
     initial_population: Population = None,
     a_priori: bool = False,
     interact: bool = False,
     n_iterations: int = 10,
     n_gen_per_iter: int = 100,
     total_function_evaluations: int = 0,
     lattice_resolution: int = None,
     use_surrogates: bool = False,
 ):
     super().__init__(
         a_priori=a_priori,
         interact=interact,
         n_iterations=n_iterations,
         n_gen_per_iter=n_gen_per_iter,
         total_function_evaluations=total_function_evaluations,
         selection_operator=selection_operator,
         use_surrogates=use_surrogates,
     )
     if lattice_resolution is None:
         lattice_res_options = [49, 13, 7, 5, 4, 3, 3, 3, 3]
         if problem.n_of_objectives < 11:
             lattice_resolution = lattice_res_options[
                 problem.n_of_objectives - 2]
         else:
             lattice_resolution = 3
     self.reference_vectors = ReferenceVectors(lattice_resolution,
                                               problem.n_of_objectives)
     if initial_population is not None:
         #  Population should be compatible.
         self.population = initial_population  # TODO put checks here.
     elif initial_population is None:
         if population_size is None:
             population_size = self.reference_vectors.number_of_vectors
         self.population = Population(problem, population_size,
                                      population_params, use_surrogates)
         self._function_evaluation_count += population_size
     self._ref_vectors_are_focused: bool = False
Example #2
0
    def __init__(
        self,
        problem: MOProblem,
        population_size: int = None,
        population_params: Dict = None,
        initial_population: Population = None,
        lattice_resolution: int = None,
        n_iterations: int = 10,
        n_gen_per_iter: int = 100,
        total_function_evaluations: int = 0,
        use_surrogates: bool = False,
    ):
        a_priori: bool = True
        interact: bool = True
        if problem.ideal is None or problem.nadir is None:
            msg = (
                f"The problem instance should contain the information about ideal and "
                f"nadir point.")
            raise eaError(msg)

        BaseEA.__init__(
            self=self,
            a_priori=a_priori,
            interact=interact,
            n_iterations=n_iterations,
            n_gen_per_iter=n_gen_per_iter,
            total_function_evaluations=total_function_evaluations,
            use_surrogates=use_surrogates,
        )

        scalarization_methods = [
            StomASF(ideal=problem.ideal * problem._max_multiplier),
            # PointMethodASF(
            #     nadir=problem.nadir * problem._max_multiplier,
            #     ideal=problem.ideal * problem._max_multiplier,
            # ),
            AugmentedGuessASF(
                nadir=problem.nadir * problem._max_multiplier,
                ideal=problem.ideal * problem._max_multiplier,
                indx_to_exclude=[],
            ),
        ]
        if lattice_resolution is None:
            lattice_res_options = [49, 13, 7, 5, 4, 3, 3, 3, 3]
            if len(scalarization_methods) < 11:
                lattice_resolution = lattice_res_options[
                    len(scalarization_methods) - 2]
            else:
                lattice_resolution = 3
        reference_vectors = ReferenceVectors(
            lattice_resolution=lattice_resolution,
            number_of_objectives=len(scalarization_methods),
        )
        population_size = reference_vectors.number_of_vectors
        population = Population(problem, population_size, population_params)

        self.reference_vectors = reference_vectors
        self.scalarization_methods = scalarization_methods

        if initial_population is not None:
            #  Population should be compatible.
            self.population = initial_population  # TODO put checks here.
        elif initial_population is None:
            if population_size is None:
                population_size = self.reference_vectors.number_of_vectors
            self.population = Population(problem, population_size,
                                         population_params, use_surrogates)
            self._function_evaluation_count += population_size
        self._ref_vectors_are_focused: bool = False
Example #3
0
            _, pref_int_rvea = int_rvea.iterate(pref_int_rvea)
            _, pref_int_nsga = int_nsga.iterate(pref_int_nsga)

            # build initial composite front
            cf = generate_composite_front(int_rvea.population.objectives,
                                          int_nsga.population.objectives)

            # the following two lines for getting pareto front by using pymoo framework
            problemR = get_problem(problem_name.lower(), n_var, n_obj)
            ref_dirs = get_reference_directions("das-dennis",
                                                n_obj,
                                                n_partitions=12)
            pareto_front = problemR.pareto_front(ref_dirs)

            # creates uniformly distributed reference vectors
            reference_vectors = ReferenceVectors(lattice_resolution, n_obj)

            # learning phase
            for i in range(L):
                data_row[["problem", "num_obj", "iteration", "num_gens"]] = [
                    problem_name,
                    n_obj,
                    i + 1,
                    gen,
                ]

                # After this class call, solutions inside the composite front are assigned to reference vectors
                base = baseADM(cf, reference_vectors)
                # generates the next reference point for the next iteration in the learning phase
                response = gp.generateRP4learning(base)