def test_resize(self): for origsize in [(4,5), (4,4), (7,5)]: image = np.random.uniform(size=(4,5)) for ny in [3,4,5,7,9,15]: for nx in [3,5,7,19]: shape = (ny, nx) x = io._resize(image, shape) self.assertEqual(x.shape, shape) #- sub- and super- selection should remain centered on original image image = np.random.uniform(size=(4,5)) tmp = io._resize(image, (4,3)) self.assertTrue(np.all(tmp == image[:, 1:-1])) tmp = io._resize(image, (4,7)) self.assertTrue(np.all(tmp[:,1:-1] == image))
def test_resize(self): for origsize in [(4, 5), (4, 4), (7, 5)]: image = np.random.uniform(size=(4, 5)) for ny in [3, 4, 5, 7, 9, 15]: for nx in [3, 5, 7, 19]: shape = (ny, nx) x = io._resize(image, shape) self.assertEqual(x.shape, shape) #- sub- and super- selection should remain centered on original image image = np.random.uniform(size=(4, 5)) tmp = io._resize(image, (4, 3)) self.assertTrue(np.all(tmp == image[:, 1:-1])) tmp = io._resize(image, (4, 7)) self.assertTrue(np.all(tmp[:, 1:-1] == image))
def test_resize(self): image = np.random.uniform(size=(4,5)) for shape in [(3,4), (4,5), (3,6), (5,4), (5,6)]: x = io._resize(image, shape) self.assertEqual(x.shape, shape)
def test_resize(self): image = np.random.uniform(size=(4, 5)) for shape in [(3, 4), (4, 5), (3, 6), (5, 4), (5, 6)]: x = io._resize(image, shape) self.assertEqual(x.shape, shape)