def main(args) : log=get_logger() log.info("starting") # read exposure to load data and get range of spectra frame = read_frame(args.infile) specmin, specmax = np.min(frame.fibers), np.max(frame.fibers) if args.cosmics_nsig>0 : # Reject cosmics reject_cosmic_rays_1d(frame,args.cosmics_nsig) # read fiberflat fiberflat = read_fiberflat(args.fiberflat) # apply fiberflat to sky fibers apply_fiberflat(frame, fiberflat) # compute sky model skymodel = compute_sky(frame,add_variance=(not args.no_extra_variance),\ angular_variation_deg=args.angular_variation_deg,\ chromatic_variation_deg=args.chromatic_variation_deg,\ adjust_wavelength=args.adjust_wavelength,\ adjust_lsf=args.adjust_lsf) # QA if (args.qafile is not None) or (args.qafig is not None): log.info("performing skysub QA") # Load qaframe = load_qa_frame(args.qafile, frame_meta=frame.meta, flavor=frame.meta['FLAVOR']) # Run qaframe.run_qa('SKYSUB', (frame, skymodel)) # Write if args.qafile is not None: write_qa_frame(args.qafile, qaframe) log.info("successfully wrote {:s}".format(args.qafile)) # Figure(s) if args.qafig is not None: qa_plots.frame_skyres(args.qafig, frame, skymodel, qaframe) # record inputs frame.meta['IN_FRAME'] = shorten_filename(args.infile) frame.meta['FIBERFLT'] = shorten_filename(args.fiberflat) # write result write_sky(args.outfile, skymodel, frame.meta) log.info("successfully wrote %s"%args.outfile)
def main(args): log = get_logger() log.info("degxx={} degxy={} degyx={} degyy={}".format( args.degxx, args.degxy, args.degyx, args.degyy)) # read preprocessed image image = read_image(args.image) log.info("read image {}".format(args.image)) if image.mask is not None: image.ivar *= (image.mask == 0) tset = fit_trace_shifts(image=image, args=args) tset.meta['IN_PSF'] = shorten_filename(args.psf) tset.meta['IN_IMAGE'] = shorten_filename(args.image) if args.outpsf is not None: write_traces_in_psf(args.psf, args.outpsf, tset) log.info("wrote modified PSF in %s" % args.outpsf)
def main_mpi(args, comm=None, timing=None): freeze_iers() nproc = 1 rank = 0 if comm is not None: nproc = comm.size rank = comm.rank mark_start = time.time() log = get_logger() psf_file = args.psf input_file = args.input # these parameters are interpreted as the *global* spec range, # to be divided among processes. specmin = args.specmin nspec = args.nspec #- Load input files and broadcast # FIXME: after we have fixed the serialization # of the PSF, read and broadcast here, to reduce # disk contention. img = None if rank == 0: img = io.read_image(input_file) if comm is not None: img = comm.bcast(img, root=0) psf = load_psf(psf_file) mark_read_input = time.time() # get spectral range if nspec is None: nspec = psf.nspec if args.fibermap is not None: fibermap = io.read_fibermap(args.fibermap) else: try: fibermap = io.read_fibermap(args.input) except (AttributeError, IOError, KeyError): fibermap = None if fibermap is not None: fibermap = fibermap[specmin:specmin + nspec] if nspec > len(fibermap): log.warning( "nspec {} > len(fibermap) {}; reducing nspec to {}".format( nspec, len(fibermap), len(fibermap))) nspec = len(fibermap) fibers = fibermap['FIBER'] else: fibers = np.arange(specmin, specmin + nspec) specmax = specmin + nspec #- Get wavelength grid from options if args.wavelength is not None: raw_wstart, raw_wstop, raw_dw = [ float(tmp) for tmp in args.wavelength.split(',') ] else: raw_wstart = np.ceil(psf.wmin_all) raw_wstop = np.floor(psf.wmax_all) raw_dw = 0.7 raw_wave = np.arange(raw_wstart, raw_wstop + raw_dw / 2.0, raw_dw) nwave = len(raw_wave) bundlesize = args.bundlesize if args.barycentric_correction: if ('RA' in img.meta) or ('TARGTRA' in img.meta): barycentric_correction_factor = \ barycentric_correction_multiplicative_factor(img.meta) #- Early commissioning has RA/TARGTRA in fibermap but not HDU 0 elif fibermap is not None and \ (('RA' in fibermap.meta) or ('TARGTRA' in fibermap.meta)): barycentric_correction_factor = \ barycentric_correction_multiplicative_factor(fibermap.meta) else: msg = 'Barycentric corr requires (TARGT)RA in HDU 0 or fibermap' log.critical(msg) raise KeyError(msg) else: barycentric_correction_factor = 1. # Explictly define the correct wavelength values to avoid confusion of reference frame # If correction applied, otherwise divide by 1 and use the same raw values wstart = raw_wstart / barycentric_correction_factor wstop = raw_wstop / barycentric_correction_factor dw = raw_dw / barycentric_correction_factor wave = raw_wave / barycentric_correction_factor #- Confirm that this PSF covers these wavelengths for these spectra psf_wavemin = np.max(psf.wavelength(list(range(specmin, specmax)), y=-0.5)) psf_wavemax = np.min( psf.wavelength(list(range(specmin, specmax)), y=psf.npix_y - 0.5)) if psf_wavemin - 5 > wstart: raise ValueError( 'Start wavelength {:.2f} < min wavelength {:.2f} for these fibers'. format(wstart, psf_wavemin)) if psf_wavemax + 5 < wstop: raise ValueError( 'Stop wavelength {:.2f} > max wavelength {:.2f} for these fibers'. format(wstop, psf_wavemax)) if rank == 0: #- Print parameters log.info("extract: input = {}".format(input_file)) log.info("extract: psf = {}".format(psf_file)) log.info("extract: specmin = {}".format(specmin)) log.info("extract: nspec = {}".format(nspec)) log.info("extract: wavelength = {},{},{}".format(wstart, wstop, dw)) log.info("extract: nwavestep = {}".format(args.nwavestep)) log.info("extract: regularize = {}".format(args.regularize)) if barycentric_correction_factor != 1.: img.meta['HELIOCOR'] = barycentric_correction_factor #- Augment input image header for output img.meta['NSPEC'] = (nspec, 'Number of spectra') img.meta['WAVEMIN'] = (raw_wstart, 'First wavelength [Angstroms]') img.meta['WAVEMAX'] = (raw_wstop, 'Last wavelength [Angstroms]') img.meta['WAVESTEP'] = (raw_dw, 'Wavelength step size [Angstroms]') img.meta['SPECTER'] = (specter.__version__, 'https://github.com/desihub/specter') img.meta['IN_PSF'] = (io.shorten_filename(psf_file), 'Input spectral PSF') img.meta['IN_IMG'] = io.shorten_filename(input_file) depend.add_dependencies(img.meta) #- Check if input PSF was itself a traceshifted version of another PSF orig_psf = None if rank == 0: try: psfhdr = fits.getheader(psf_file, 'PSF') orig_psf = psfhdr['IN_PSF'] except KeyError: #- could happen due to PSF format not having "PSF" extension, #- or due to PSF header not having 'IN_PSF' keyword. Either is OK pass if comm is not None: orig_psf = comm.bcast(orig_psf, root=0) if orig_psf is not None: img.meta['ORIG_PSF'] = orig_psf #- If not using MPI, use a single call to each of these and then end this function call # Otherwise, continue on to splitting things up for the different ranks if comm is None: _extract_and_save(img, psf, specmin, nspec, specmin, wave, raw_wave, fibers, fibermap, args.output, args.model, bundlesize, args, log) #- This is it if we aren't running MPI, so return return #else: # # Continue to the MPI section, which could go under this else statment # # But to save on indentation we'll just pass on to the rest of the function # # since the alternative has already returned # pass # Now we divide our spectra into bundles checkbundles = set() checkbundles.update( np.floor_divide(np.arange(specmin, specmax), bundlesize * np.ones(nspec)).astype(int)) bundles = sorted(checkbundles) nbundle = len(bundles) bspecmin = {} bnspec = {} for b in bundles: if specmin > b * bundlesize: bspecmin[b] = specmin else: bspecmin[b] = b * bundlesize if (b + 1) * bundlesize > specmax: bnspec[b] = specmax - bspecmin[b] else: bnspec[b] = bundlesize # Now we assign bundles to processes mynbundle = int(nbundle // nproc) myfirstbundle = 0 leftover = nbundle % nproc if rank < leftover: mynbundle += 1 myfirstbundle = rank * mynbundle else: myfirstbundle = ((mynbundle + 1) * leftover) + (mynbundle * (rank - leftover)) # get the root output file outpat = re.compile(r'(.*)\.fits') outmat = outpat.match(args.output) if outmat is None: raise RuntimeError( "extraction output file should have .fits extension") outroot = outmat.group(1) outdir = os.path.normpath(os.path.dirname(outroot)) if rank == 0: if not os.path.isdir(outdir): os.makedirs(outdir) if comm is not None: comm.barrier() mark_preparation = time.time() time_total_extraction = 0.0 time_total_write_output = 0.0 failcount = 0 for b in range(myfirstbundle, myfirstbundle + mynbundle): mark_iteration_start = time.time() outbundle = "{}_{:02d}.fits".format(outroot, b) outmodel = "{}_model_{:02d}.fits".format(outroot, b) log.info('extract: Rank {} extracting {} spectra {}:{} at {}'.format( rank, os.path.basename(input_file), bspecmin[b], bspecmin[b] + bnspec[b], time.asctime(), )) sys.stdout.flush() #- The actual extraction try: mark_extraction = _extract_and_save(img, psf, bspecmin[b], bnspec[b], specmin, wave, raw_wave, fibers, fibermap, outbundle, outmodel, bundlesize, args, log) mark_write_output = time.time() time_total_extraction += mark_extraction - mark_iteration_start time_total_write_output += mark_write_output - mark_extraction except: # Log the error and increment the number of failures log.error( "extract: FAILED bundle {}, spectrum range {}:{}".format( b, bspecmin[b], bspecmin[b] + bnspec[b])) exc_type, exc_value, exc_traceback = sys.exc_info() lines = traceback.format_exception(exc_type, exc_value, exc_traceback) log.error(''.join(lines)) failcount += 1 sys.stdout.flush() if comm is not None: failcount = comm.allreduce(failcount) if failcount > 0: # all processes throw raise RuntimeError("some extraction bundles failed") time_merge = None if rank == 0: mark_merge_start = time.time() mergeopts = ['--output', args.output, '--force', '--delete'] mergeopts.extend( ["{}_{:02d}.fits".format(outroot, b) for b in bundles]) mergeargs = mergebundles.parse(mergeopts) mergebundles.main(mergeargs) if args.model is not None: model = None for b in bundles: outmodel = "{}_model_{:02d}.fits".format(outroot, b) if model is None: model = fits.getdata(outmodel) else: #- TODO: test and warn if models overlap for pixels with #- non-zero values model += fits.getdata(outmodel) os.remove(outmodel) fits.writeto(args.model, model) mark_merge_end = time.time() time_merge = mark_merge_end - mark_merge_start # Resolve difference timer data if type(timing) is dict: timing["read_input"] = mark_read_input - mark_start timing["preparation"] = mark_preparation - mark_read_input timing["total_extraction"] = time_total_extraction timing["total_write_output"] = time_total_write_output timing["merge"] = time_merge
def preproc(rawimage, header, primary_header, bias=True, dark=True, pixflat=True, mask=True, bkgsub=False, nocosmic=False, cosmics_nsig=6, cosmics_cfudge=3., cosmics_c2fudge=0.5, ccd_calibration_filename=None, nocrosstalk=False, nogain=False, overscan_per_row=False, use_overscan_row=False, use_savgol=None, nodarktrail=False, remove_scattered_light=False, psf_filename=None, bias_img=None, model_variance=False): ''' preprocess image using metadata in header image = ((rawimage-bias-overscan)*gain)/pixflat Args: rawimage : 2D numpy array directly from raw data file header : dict-like metadata, e.g. from FITS header, with keywords CAMERA, BIASSECx, DATASECx, CCDSECx where x = A, B, C, D for each of the 4 amplifiers (also supports old naming convention 1, 2, 3, 4). primary_header: dict-like metadata fit keywords EXPTIME, DOSVER DATE-OBS is also required if bias, pixflat, or mask=True Optional bias, pixflat, and mask can each be: False: don't apply that step True: use default calibration data for that night ndarray: use that array filename (str or unicode): read HDU 0 and use that Optional overscan features: overscan_per_row : bool, Subtract the overscan_col values row by row from the data. use_overscan_row : bool, Subtract off the overscan_row from the data (default: False). Requires ORSEC in the Header use_savgol : bool, Specify whether to use Savitsky-Golay filter for the overscan. (default: False). Requires use_overscan_row=True to have any effect. Optional variance model if model_variance=True Optional background subtraction with median filtering if bkgsub=True Optional disabling of cosmic ray rejection if nocosmic=True Optional disabling of dark trail correction if nodarktrail=True Optional bias image (testing only) may be provided by bias_img= Optional tuning of cosmic ray rejection parameters: cosmics_nsig: number of sigma above background required cosmics_cfudge: number of sigma inconsistent with PSF required cosmics_c2fudge: fudge factor applied to PSF Optional fit and subtraction of scattered light Returns Image object with member variables: pix : 2D preprocessed image in units of electrons per pixel ivar : 2D inverse variance of image mask : 2D mask of image (0=good) readnoise : 2D per-pixel readnoise of image meta : metadata dictionary TODO: define what keywords are included preprocessing includes the following steps: - bias image subtraction - overscan subtraction (from BIASSEC* keyword defined regions) - readnoise estimation (from BIASSEC* keyword defined regions) - gain correction (from GAIN* keywords) - pixel flat correction - cosmic ray masking - propagation of input known bad pixel mask - inverse variance estimation Notes: The bias image is subtracted before any other calculation to remove any non-uniformities in the overscan regions prior to calculating overscan levels and readnoise. The readnoise is an image not just one number per amp, because the pixflat image also affects the interpreted readnoise. The inverse variance is estimated from the readnoise and the image itself, and thus is biased. ''' log = get_logger() header = header.copy() depend.setdep(header, 'DESI_SPECTRO_CALIB', os.getenv('DESI_SPECTRO_CALIB')) for key in ['DESI_SPECTRO_REDUX', 'SPECPROD']: if key in os.environ: depend.setdep(header, key, os.environ[key]) cfinder = None if ccd_calibration_filename is not False: cfinder = CalibFinder([header, primary_header], yaml_file=ccd_calibration_filename) #- TODO: Check for required keywords first #- Subtract bias image camera = header['CAMERA'].lower() #- convert rawimage to float64 : this is the output format of read_image rawimage = rawimage.astype(np.float64) # Savgol if cfinder and cfinder.haskey("USE_ORSEC"): use_overscan_row = cfinder.value("USE_ORSEC") if cfinder and cfinder.haskey("SAVGOL"): use_savgol = cfinder.value("SAVGOL") # Set bias image, as desired if bias_img is None: bias = get_calibration_image(cfinder, "BIAS", bias, header) else: bias = bias_img #- Check if this file uses amp names 1,2,3,4 (old) or A,B,C,D (new) amp_ids = get_amp_ids(header) #- Double check that we have the necessary keywords missing_keywords = list() for prefix in ['CCDSEC', 'BIASSEC']: for amp in amp_ids: key = prefix + amp if not key in header: log.error('No {} keyword in header'.format(key)) missing_keywords.append(key) if len(missing_keywords) > 0: raise KeyError("Missing keywords {}".format( ' '.join(missing_keywords))) #- Output arrays ny = 0 nx = 0 for amp in amp_ids: yy, xx = parse_sec_keyword(header['CCDSEC%s' % amp]) ny = max(ny, yy.stop) nx = max(nx, xx.stop) image = np.zeros((ny, nx)) readnoise = np.zeros_like(image) #- Load dark if cfinder and cfinder.haskey("DARK") and (dark is not False): #- Exposure time if cfinder and cfinder.haskey("EXPTIMEKEY"): exptime_key = cfinder.value("EXPTIMEKEY") log.info("Using exposure time keyword %s for dark normalization" % exptime_key) else: exptime_key = "EXPTIME" exptime = primary_header[exptime_key] log.info( "Use exptime = {} sec to compute the dark current".format(exptime)) dark_filename = cfinder.findfile("DARK") depend.setdep(header, 'CCD_CALIB_DARK', shorten_filename(dark_filename)) log.info(f'Using DARK model from {dark_filename}') # dark is multipled by exptime, or we use the non-linear dark model in the routine dark = read_dark(filename=dark_filename, exptime=exptime) if dark.shape == image.shape: log.info("dark is trimmed") trimmed_dark_in_electrons = dark dark_is_trimmed = True elif dark.shape == rawimage.shape: log.info("dark is not trimmed") trimmed_dark_in_electrons = np.zeros_like(image) dark_is_trimmed = False else: message = "incompatible dark shape={} when raw shape={} and preproc shape={}".format( dark.shape, rawimage.shape, image.shape) log.error(message) raise ValueError(message) else: dark = False if bias is not False: #- it's an array if bias.shape == rawimage.shape: log.info("subtracting bias") rawimage = rawimage - bias else: raise ValueError('shape mismatch bias {} != rawimage {}'.format( bias.shape, rawimage.shape)) #- Load mask mask = get_calibration_image(cfinder, "MASK", mask, header) if mask is False: mask = np.zeros(image.shape, dtype=np.int32) else: if mask.shape != image.shape: raise ValueError('shape mismatch mask {} != image {}'.format( mask.shape, image.shape)) for amp in amp_ids: # Grab the sections ov_col = parse_sec_keyword(header['BIASSEC' + amp]) if 'ORSEC' + amp in header.keys(): ov_row = parse_sec_keyword(header['ORSEC' + amp]) elif use_overscan_row: log.error('No ORSEC{} keyword; not using overscan_row'.format(amp)) use_overscan_row = False if nogain: gain = 1. else: #- Initial teststand data may be missing GAIN* keywords; don't crash if 'GAIN' + amp in header: gain = header['GAIN' + amp] #- gain = electrons / ADU else: if cfinder and cfinder.haskey('GAIN' + amp): gain = float(cfinder.value('GAIN' + amp)) log.info('Using GAIN{}={} from calibration data'.format( amp, gain)) else: gain = 1.0 log.warning( 'Missing keyword GAIN{} in header and nothing in calib data; using {}' .format(amp, gain)) #- Record what gain value was actually used header['GAIN' + amp] = gain #- Add saturation level if 'SATURLEV' + amp in header: saturlev_adu = header['SATURLEV' + amp] # in ADU else: if cfinder and cfinder.haskey('SATURLEV' + amp): saturlev_adu = float(cfinder.value('SATURLEV' + amp)) log.info('Using SATURLEV{}={} from calibration data'.format( amp, saturlev_adu)) else: saturlev_adu = 2**16 - 1 # 65535 is the max value in the images log.warning( 'Missing keyword SATURLEV{} in header and nothing in calib data; using {} ADU' .format(amp, saturlev_adu)) header['SATULEV' + amp] = (saturlev_adu, "saturation or non lin. level, in ADU, inc. bias") # Generate the overscan images raw_overscan_col = rawimage[ov_col].copy() if use_overscan_row: raw_overscan_row = rawimage[ov_row].copy() overscan_row = np.zeros_like(raw_overscan_row) # Remove overscan_col from overscan_row raw_overscan_squared = rawimage[ov_row[0], ov_col[1]].copy() for row in range(raw_overscan_row.shape[0]): o, r = _overscan(raw_overscan_squared[row]) overscan_row[row] = raw_overscan_row[row] - o # Now remove the overscan_col nrows = raw_overscan_col.shape[0] log.info("nrows in overscan=%d" % nrows) overscan_col = np.zeros(nrows) rdnoise = np.zeros(nrows) if (cfinder and cfinder.haskey('OVERSCAN' + amp) and cfinder.value("OVERSCAN" + amp).upper() == "PER_ROW") or overscan_per_row: log.info( "Subtracting overscan per row for amplifier %s of camera %s" % (amp, camera)) for j in range(nrows): if np.isnan(np.sum(overscan_col[j])): log.warning( "NaN values in row %d of overscan of amplifier %s of camera %s" % (j, amp, camera)) continue o, r = _overscan(raw_overscan_col[j]) #log.info("%d %f %f"%(j,o,r)) overscan_col[j] = o rdnoise[j] = r else: log.info( "Subtracting average overscan for amplifier %s of camera %s" % (amp, camera)) o, r = _overscan(raw_overscan_col) overscan_col += o rdnoise += r if bias is not False: jj = parse_sec_keyword(header['DATASEC' + amp]) o, biasnoise = _overscan(bias[jj]) new_rdnoise = np.sqrt(rdnoise**2 + biasnoise**2) log.info( "Master bias noise for AMP %s = %4.3f ADU, rdnoise %4.3f -> %4.3f ADU" % (amp, biasnoise, np.mean(rdnoise), np.mean(new_rdnoise))) rdnoise = new_rdnoise rdnoise *= gain median_rdnoise = np.median(rdnoise) median_overscan = np.median(overscan_col) log.info("Median rdnoise and overscan= %f %f" % (median_rdnoise, median_overscan)) kk = parse_sec_keyword(header['CCDSEC' + amp]) for j in range(nrows): readnoise[kk][j] = rdnoise[j] header['OVERSCN' + amp] = (median_overscan, 'ADUs (gain not applied)') if gain != 1: rdnoise_message = 'electrons (gain is applied)' gain_message = 'e/ADU (gain applied to image)' else: rdnoise_message = 'ADUs (gain not applied)' gain_message = 'gain not applied to image' header['OBSRDN' + amp] = (median_rdnoise, rdnoise_message) header['GAIN' + amp] = (gain, gain_message) #- Warn/error if measured readnoise is very different from expected if exists if 'RDNOISE' + amp in header: expected_readnoise = header['RDNOISE' + amp] if median_rdnoise < 0.5 * expected_readnoise: log.error( 'Amp {} measured readnoise {:.2f} < 0.5 * expected readnoise {:.2f}' .format(amp, median_rdnoise, expected_readnoise)) elif median_rdnoise < 0.9 * expected_readnoise: log.warning( 'Amp {} measured readnoise {:.2f} < 0.9 * expected readnoise {:.2f}' .format(amp, median_rdnoise, expected_readnoise)) elif median_rdnoise > 2.0 * expected_readnoise: log.error( 'Amp {} measured readnoise {:.2f} > 2 * expected readnoise {:.2f}' .format(amp, median_rdnoise, expected_readnoise)) elif median_rdnoise > 1.2 * expected_readnoise: log.warning( 'Amp {} measured readnoise {:.2f} > 1.2 * expected readnoise {:.2f}' .format(amp, median_rdnoise, expected_readnoise)) #else: # log.warning('Expected readnoise keyword {} missing'.format('RDNOISE'+amp)) log.info("Measured readnoise for AMP %s = %f" % (amp, median_rdnoise)) #- subtract overscan from data region and apply gain jj = parse_sec_keyword(header['DATASEC' + amp]) data = rawimage[jj].copy() # Subtract columns for k in range(nrows): data[k] -= overscan_col[k] saturlev_elec = gain * (saturlev_adu - np.mean(overscan_col)) header['SATUELE' + amp] = (saturlev_elec, "saturation or non lin. level, in electrons") # And now the rows if use_overscan_row: # Savgol? if use_savgol: log.info("Using savgol") collapse_oscan_row = np.zeros(overscan_row.shape[1]) for col in range(overscan_row.shape[1]): o, _ = _overscan(overscan_row[:, col]) collapse_oscan_row[col] = o oscan_row = _savgol_clipped(collapse_oscan_row, niter=0) oimg_row = np.outer(np.ones(data.shape[0]), oscan_row) data -= oimg_row else: o, r = _overscan(overscan_row) data -= o #- apply saturlev (defined in ADU), prior to multiplication by gain saturated = (rawimage[jj] >= saturlev_adu) mask[kk][saturated] |= ccdmask.SATURATED #- ADC to electrons image[kk] = data * gain if dark is not False: if not dark_is_trimmed: trimmed_dark_in_electrons[kk] = dark[jj] * gain if not nocrosstalk: #- apply cross-talk # the ccd looks like : # C D # A B # for cross talk, we need a symmetric 4x4 flip_matrix # of coordinates ABCD giving flip of both axis # when computing crosstalk of # A B C D # # A AA AB AC AD # B BA BB BC BD # C CA CB CC CD # D DA DB DC BB # orientation_matrix_defines change of orientation # fip_axis_0 = np.array([[1, 1, -1, -1], [1, 1, -1, -1], [-1, -1, 1, 1], [-1, -1, 1, 1]]) fip_axis_1 = np.array([[1, -1, 1, -1], [-1, 1, -1, 1], [1, -1, 1, -1], [-1, 1, -1, 1]]) for a1 in range(len(amp_ids)): amp1 = amp_ids[a1] ii1 = parse_sec_keyword(header['CCDSEC' + amp1]) a1flux = image[ii1] #a1mask=mask[ii1] for a2 in range(len(amp_ids)): if a1 == a2: continue amp2 = amp_ids[a2] if cfinder is None: continue if not cfinder.haskey("CROSSTALK%s%s" % (amp1, amp2)): continue crosstalk = cfinder.value("CROSSTALK%s%s" % (amp1, amp2)) if crosstalk == 0.: continue log.info("Correct for crosstalk=%f from AMP %s into %s" % (crosstalk, amp1, amp2)) a12flux = crosstalk * a1flux.copy() #a12mask=a1mask.copy() if fip_axis_0[a1, a2] == -1: a12flux = a12flux[::-1] #a12mask=a12mask[::-1] if fip_axis_1[a1, a2] == -1: a12flux = a12flux[:, ::-1] #a12mask=a12mask[:,::-1] ii2 = parse_sec_keyword(header['CCDSEC' + amp2]) image[ii2] -= a12flux # mask[ii2] |= a12mask (not sure we really need to propagate the mask) #- Poisson noise variance (prior to dark subtraction and prior to pixel flat field) #- This is biasing, but that's what we have for now poisson_var = image.clip(0) #- subtract dark after multiplication by gain if dark is not False: log.info("subtracting dark") image -= trimmed_dark_in_electrons # measure its noise new_readnoise = np.zeros(readnoise.shape) for amp in amp_ids: kk = parse_sec_keyword(header['CCDSEC' + amp]) o, darknoise = _overscan(trimmed_dark_in_electrons[kk]) new_readnoise[kk] = np.sqrt(readnoise[kk]**2 + darknoise**2) log.info( "Master dark noise for AMP %s = %4.3f elec, rdnoise %4.3f -> %4.3f elec" % (amp, darknoise, np.mean( readnoise[kk]), np.mean(new_readnoise[kk]))) readnoise = new_readnoise #- Correct for dark trails if any if not nodarktrail and cfinder is not None: for amp in amp_ids: if cfinder.haskey("DARKTRAILAMP%s" % amp): amplitude = cfinder.value("DARKTRAILAMP%s" % amp) width = cfinder.value("DARKTRAILWIDTH%s" % amp) ii = _parse_sec_keyword(header["CCDSEC" + amp]) log.info( "Removing dark trails for amplifier %s with width=%3.1f and amplitude=%5.4f" % (amp, width, amplitude)) correct_dark_trail(image, ii, left=((amp == "B") | (amp == "D")), width=width, amplitude=amplitude) #- Divide by pixflat image pixflat = get_calibration_image(cfinder, "PIXFLAT", pixflat, header) if pixflat is not False: if pixflat.shape != image.shape: raise ValueError('shape mismatch pixflat {} != image {}'.format( pixflat.shape, image.shape)) almost_zero = 0.001 if np.all(pixflat > almost_zero): image /= pixflat readnoise /= pixflat poisson_var /= pixflat**2 else: good = (pixflat > almost_zero) image[good] /= pixflat[good] readnoise[good] /= pixflat[good] poisson_var[good] /= pixflat[good]**2 mask[~good] |= ccdmask.PIXFLATZERO lowpixflat = (0 < pixflat) & (pixflat < 0.1) if np.any(lowpixflat): mask[lowpixflat] |= ccdmask.PIXFLATLOW #- Inverse variance, estimated directly from the data (BEWARE: biased!) var = poisson_var + readnoise**2 ivar = np.zeros(var.shape) ivar[var > 0] = 1.0 / var[var > 0] #- Ridiculously high readnoise is bad mask[readnoise > 100] |= ccdmask.BADREADNOISE if bkgsub: bkg = _background(image, header) image -= bkg img = Image(image, ivar=ivar, mask=mask, meta=header, readnoise=readnoise, camera=camera) #- update img.mask to mask cosmic rays if not nocosmic: cosmics.reject_cosmic_rays(img, nsig=cosmics_nsig, cfudge=cosmics_cfudge, c2fudge=cosmics_c2fudge) mask = img.mask xyset = None if model_variance: psf = None if psf_filename is None: psf_filename = cfinder.findfile("PSF") depend.setdep(header, 'CCD_CALIB_PSF', shorten_filename(psf_filename)) xyset = read_xytraceset(psf_filename) fiberflat = None with_spectral_smoothing = True with_sky_model = True if with_sky_model: log.debug("Will use a sky model to model the spectra") fiberflat_filename = cfinder.findfile("FIBERFLAT") depend.setdep(header, 'CCD_CALIB_FIBERFLAT', shorten_filename(fiberflat_filename)) if fiberflat_filename is not None: fiberflat = read_fiberflat(fiberflat_filename) log.info("compute an image model after dark correction and pixel flat") nsig = 5. mimage = compute_image_model( img, xyset, fiberflat=fiberflat, with_spectral_smoothing=with_spectral_smoothing, with_sky_model=with_sky_model, spectral_smoothing_nsig=nsig, psf=psf) # here we bring back original image for large outliers # this allows to have a correct ivar for cosmic rays and bright sources eps = 0.1 out = (((ivar > 0) * (image - mimage)**2 / (1. / (ivar + (ivar == 0)) + (0.1 * mimage)**2)) > nsig**2) # out &= (image>mimage) # could request this to be conservative on the variance ... but this could cause other issues mimage[out] = image[out] log.info("use image model to compute variance") if bkgsub: mimage += bkg if pixflat is not False: # undo pixflat mimage *= pixflat if dark is not False: mimage += dark poisson_var = mimage.clip(0) if pixflat is not False: if np.all(pixflat > almost_zero): poisson_var /= pixflat**2 else: poisson_var[good] /= pixflat[good]**2 var = poisson_var + readnoise**2 ivar[var > 0] = 1.0 / var[var > 0] # regenerate img object img = Image(image, ivar=ivar, mask=mask, meta=header, readnoise=readnoise, camera=camera) if remove_scattered_light: if xyset is None: if psf_filename is None: psf_filename = cfinder.findfile("PSF") depend.setdep(header, 'SCATTERED_LIGHT_PSF', shorten_filename(psf_filename)) xyset = read_xytraceset(psf_filename) img.pix -= model_scattered_light(img, xyset) #- Extend header with primary header keywords too addkeys(img.meta, primary_header) return img
def get_calibration_image(cfinder, keyword, entry, header=None): """Reads a calibration file Args: cfinder : None or CalibFinder object keyword : BIAS, MASK, or PIXFLAT entry : boolean or filename or image if entry==False return False if entry==True use calibration filename from calib. config and read it if entry==str use this for the filename if entry==image return input Options: header : if not None, update header['CAL...'] = calib provenance returns: 2D numpy array with calibration image """ log = get_logger() #- set the header to something so that we don't have to keep checking it if header is None: header = dict() calkey = 'CCD_CALIB_{}'.format(keyword.upper()) if entry is False: depend.setdep(header, calkey, 'None') return False # we don't want do anything filename = None if entry is True: # we have to find the filename if cfinder is None: log.error("no calibration data was found") raise ValueError("no calibration data was found") if cfinder.haskey(keyword): filename = cfinder.findfile(keyword) depend.setdep(header, calkey, shorten_filename(filename)) else: depend.setdep(header, calkey, 'None') return False # we say in the calibration data we don't need this elif isinstance(entry, str): filename = entry depend.setdep(header, calkey, shorten_filename(filename)) else: depend.setdep(header, calkey, 'Unknown image') return entry # it's expected to be an image array log.info("Using %s %s" % (keyword, filename)) if keyword == "BIAS": return read_bias(filename=filename) elif keyword == "MASK": return read_mask(filename=filename) elif keyword == "PIXFLAT": return read_pixflat(filename=filename) elif keyword == "DARK": raise ValueError("Dark are now treated separately.") else: log.error("Don't known how to read %s in %s" % (keyword, path)) raise ValueError("Don't known how to read %s in %s" % (keyword, path)) return False
def main(args=None, comm=None): if args is None: args = parse() # elif isinstance(args, (list, tuple)): # args = parse(args) log = get_logger() start_mpi_connect = time.time() if comm is not None: #- Use the provided comm to determine rank and size rank = comm.rank size = comm.size else: #- Check MPI flags and determine the comm, rank, and size given the arguments comm, rank, size = assign_mpi(do_mpi=args.mpi, do_batch=args.batch, log=log) stop_mpi_connect = time.time() #- Start timer; only print log messages from rank 0 (others are silent) timer = desiutil.timer.Timer(silent=(rank > 0)) #- Fill in timing information for steps before we had the timer created if args.starttime is not None: timer.start('startup', starttime=args.starttime) timer.stop('startup', stoptime=start_imports) timer.start('imports', starttime=start_imports) timer.stop('imports', stoptime=stop_imports) timer.start('mpi_connect', starttime=start_mpi_connect) timer.stop('mpi_connect', stoptime=stop_mpi_connect) #- Freeze IERS after parsing args so that it doesn't bother if only --help timer.start('freeze_iers') desiutil.iers.freeze_iers() timer.stop('freeze_iers') #- Preflight checks timer.start('preflight') if rank > 0: #- Let rank 0 fetch these, and then broadcast args, hdr, camhdr = None, None, None else: args, hdr, camhdr = update_args_with_headers(args) ## Make sure badamps is formatted properly if comm is not None and rank == 0 and args.badamps is not None: args.badamps = validate_badamps(args.badamps) if comm is not None: args = comm.bcast(args, root=0) hdr = comm.bcast(hdr, root=0) camhdr = comm.bcast(camhdr, root=0) known_obstype = [ 'SCIENCE', 'ARC', 'FLAT', 'ZERO', 'DARK', 'TESTARC', 'TESTFLAT', 'PIXFLAT', 'SKY', 'TWILIGHT', 'OTHER' ] if args.obstype not in known_obstype: raise RuntimeError('obstype {} not in {}'.format( args.obstype, known_obstype)) timer.stop('preflight') #------------------------------------------------------------------------- #- Create and submit a batch job if requested if args.batch: #exp_str = '{:08d}'.format(args.expid) jobdesc = args.obstype.lower() if args.obstype == 'SCIENCE': # if not doing pre-stdstar fitting or stdstar fitting and if there is # no flag stopping flux calibration, set job to poststdstar if args.noprestdstarfit and args.nostdstarfit and ( not args.nofluxcalib): jobdesc = 'poststdstar' # elif told not to do std or post stdstar but the flag for prestdstar isn't set, # then perform prestdstar elif (not args.noprestdstarfit ) and args.nostdstarfit and args.nofluxcalib: jobdesc = 'prestdstar' #elif (not args.noprestdstarfit) and (not args.nostdstarfit) and (not args.nofluxcalib): # jobdesc = 'science' scriptfile = create_desi_proc_batch_script(night=args.night, exp=args.expid, cameras=args.cameras,\ jobdesc=jobdesc, queue=args.queue, runtime=args.runtime,\ batch_opts=args.batch_opts, timingfile=args.timingfile, system_name=args.system_name) err = 0 if not args.nosubmit: err = subprocess.call(['sbatch', scriptfile]) sys.exit(err) #------------------------------------------------------------------------- #- Proceeding with running #- What are we going to do? if rank == 0: log.info('----------') log.info('Input {}'.format(args.input)) log.info('Night {} expid {}'.format(args.night, args.expid)) log.info('Obstype {}'.format(args.obstype)) log.info('Cameras {}'.format(args.cameras)) log.info('Output root {}'.format(desispec.io.specprod_root())) log.info('----------') #- Create output directories if needed if rank == 0: preprocdir = os.path.dirname( findfile('preproc', args.night, args.expid, 'b0')) expdir = os.path.dirname( findfile('frame', args.night, args.expid, 'b0')) os.makedirs(preprocdir, exist_ok=True) os.makedirs(expdir, exist_ok=True) #- Wait for rank 0 to make directories before proceeding if comm is not None: comm.barrier() #------------------------------------------------------------------------- #- Preproc #- All obstypes get preprocessed timer.start('fibermap') #- Assemble fibermap for science exposures fibermap = None fibermap_ok = None if rank == 0 and args.obstype == 'SCIENCE': fibermap = findfile('fibermap', args.night, args.expid) if not os.path.exists(fibermap): tmp = findfile('preproc', args.night, args.expid, 'b0') preprocdir = os.path.dirname(tmp) fibermap = os.path.join(preprocdir, os.path.basename(fibermap)) log.info('Creating fibermap {}'.format(fibermap)) cmd = 'assemble_fibermap -n {} -e {} -o {}'.format( args.night, args.expid, fibermap) if args.badamps is not None: cmd += ' --badamps={}'.format(args.badamps) runcmd(cmd, inputs=[], outputs=[fibermap]) fibermap_ok = os.path.exists(fibermap) #- Some commissioning files didn't have coords* files that caused assemble_fibermap to fail #- these are well known failures with no other solution, so for those, just force creation #- of a fibermap with null coordinate information if not fibermap_ok and int(args.night) < 20200310: log.info( "Since night is before 20200310, trying to force fibermap creation without coords file" ) cmd += ' --force' runcmd(cmd, inputs=[], outputs=[fibermap]) fibermap_ok = os.path.exists(fibermap) #- If assemble_fibermap failed and obstype is SCIENCE, exit now if comm is not None: fibermap_ok = comm.bcast(fibermap_ok, root=0) if args.obstype == 'SCIENCE' and not fibermap_ok: sys.stdout.flush() if rank == 0: log.critical( 'assemble_fibermap failed for science exposure; exiting now') sys.exit(13) #- Wait for rank 0 to make fibermap if needed if comm is not None: fibermap = comm.bcast(fibermap, root=0) timer.stop('fibermap') if not (args.obstype in ['SCIENCE'] and args.noprestdstarfit): timer.start('preproc') for i in range(rank, len(args.cameras), size): camera = args.cameras[i] outfile = findfile('preproc', args.night, args.expid, camera) outdir = os.path.dirname(outfile) cmd = "desi_preproc -i {} -o {} --outdir {} --cameras {}".format( args.input, outfile, outdir, camera) if args.scattered_light: cmd += " --scattered-light" if fibermap is not None: cmd += " --fibermap {}".format(fibermap) if not args.obstype in ['ARC']: # never model variance for arcs if not args.no_model_pixel_variance: cmd += " --model-variance" runcmd(cmd, inputs=[args.input], outputs=[outfile]) timer.stop('preproc') if comm is not None: comm.barrier() #------------------------------------------------------------------------- #- Get input PSFs timer.start('findpsf') input_psf = dict() if rank == 0: for camera in args.cameras: if args.psf is not None: input_psf[camera] = args.psf elif args.calibnight is not None: # look for a psfnight psf for this calib night psfnightfile = findfile('psfnight', args.calibnight, args.expid, camera) if not os.path.isfile(psfnightfile): log.error("no {}".format(psfnightfile)) raise IOError("no {}".format(psfnightfile)) input_psf[camera] = psfnightfile else: # look for a psfnight psf psfnightfile = findfile('psfnight', args.night, args.expid, camera) if os.path.isfile(psfnightfile): input_psf[camera] = psfnightfile elif args.most_recent_calib: nightfile = find_most_recent(args.night, file_type='psfnight') if nightfile is None: input_psf[camera] = findcalibfile( [hdr, camhdr[camera]], 'PSF') else: input_psf[camera] = nightfile else: input_psf[camera] = findcalibfile([hdr, camhdr[camera]], 'PSF') log.info("Will use input PSF : {}".format(input_psf[camera])) if comm is not None: input_psf = comm.bcast(input_psf, root=0) timer.stop('findpsf') #------------------------------------------------------------------------- #- Traceshift if ( args.obstype in ['FLAT', 'TESTFLAT', 'SKY', 'TWILIGHT'] ) or \ ( args.obstype in ['SCIENCE'] and (not args.noprestdstarfit) ): timer.start('traceshift') if rank == 0 and args.traceshift: log.info('Starting traceshift at {}'.format(time.asctime())) for i in range(rank, len(args.cameras), size): camera = args.cameras[i] preprocfile = findfile('preproc', args.night, args.expid, camera) inpsf = input_psf[camera] outpsf = findfile('psf', args.night, args.expid, camera) if not os.path.isfile(outpsf): if args.traceshift: cmd = "desi_compute_trace_shifts" cmd += " -i {}".format(preprocfile) cmd += " --psf {}".format(inpsf) cmd += " --outpsf {}".format(outpsf) cmd += " --degxx 2 --degxy 0" if args.obstype in ['FLAT', 'TESTFLAT', 'TWILIGHT']: cmd += " --continuum" else: cmd += " --degyx 2 --degyy 0" if args.obstype in ['SCIENCE', 'SKY']: cmd += ' --sky' else: cmd = "ln -s {} {}".format(inpsf, outpsf) runcmd(cmd, inputs=[preprocfile, inpsf], outputs=[outpsf]) else: log.info("PSF {} exists".format(outpsf)) timer.stop('traceshift') if comm is not None: comm.barrier() #------------------------------------------------------------------------- #- PSF #- MPI parallelize this step if args.obstype in ['ARC', 'TESTARC']: timer.start('arc_traceshift') if rank == 0: log.info('Starting traceshift before specex PSF fit at {}'.format( time.asctime())) for i in range(rank, len(args.cameras), size): camera = args.cameras[i] preprocfile = findfile('preproc', args.night, args.expid, camera) inpsf = input_psf[camera] outpsf = findfile('psf', args.night, args.expid, camera) outpsf = replace_prefix(outpsf, "psf", "shifted-input-psf") if not os.path.isfile(outpsf): cmd = "desi_compute_trace_shifts" cmd += " -i {}".format(preprocfile) cmd += " --psf {}".format(inpsf) cmd += " --outpsf {}".format(outpsf) cmd += " --degxx 0 --degxy 0 --degyx 0 --degyy 0" cmd += ' --arc-lamps' runcmd(cmd, inputs=[preprocfile, inpsf], outputs=[outpsf]) else: log.info("PSF {} exists".format(outpsf)) timer.stop('arc_traceshift') if comm is not None: comm.barrier() timer.start('psf') if rank == 0: log.info('Starting specex PSF fitting at {}'.format( time.asctime())) if rank > 0: cmds = inputs = outputs = None else: cmds = dict() inputs = dict() outputs = dict() for camera in args.cameras: preprocfile = findfile('preproc', args.night, args.expid, camera) tmpname = findfile('psf', args.night, args.expid, camera) inpsf = replace_prefix(tmpname, "psf", "shifted-input-psf") outpsf = replace_prefix(tmpname, "psf", "fit-psf") log.info("now run specex psf fit") cmd = 'desi_compute_psf' cmd += ' --input-image {}'.format(preprocfile) cmd += ' --input-psf {}'.format(inpsf) cmd += ' --output-psf {}'.format(outpsf) # look for fiber blacklist cfinder = CalibFinder([hdr, camhdr[camera]]) blacklistkey = "FIBERBLACKLIST" if not cfinder.haskey(blacklistkey) and cfinder.haskey( "BROKENFIBERS"): log.warning( "BROKENFIBERS yaml keyword deprecated, please use FIBERBLACKLIST" ) blacklistkey = "BROKENFIBERS" if cfinder.haskey(blacklistkey): blacklist = cfinder.value(blacklistkey) cmd += ' --broken-fibers {}'.format(blacklist) if rank == 0: log.warning('broken fibers: {}'.format(blacklist)) if not os.path.exists(outpsf): cmds[camera] = cmd inputs[camera] = [preprocfile, inpsf] outputs[camera] = [ outpsf, ] if comm is not None: cmds = comm.bcast(cmds, root=0) inputs = comm.bcast(inputs, root=0) outputs = comm.bcast(outputs, root=0) #- split communicator by 20 (number of bundles) group_size = 20 if (rank == 0) and (size % group_size != 0): log.warning( 'MPI size={} should be evenly divisible by {}'.format( size, group_size)) group = rank // group_size num_groups = (size + group_size - 1) // group_size comm_group = comm.Split(color=group) if rank == 0: log.info( f'Fitting PSFs with {num_groups} sub-communicators of size {group_size}' ) for i in range(group, len(args.cameras), num_groups): camera = args.cameras[i] if camera in cmds: cmdargs = cmds[camera].split()[1:] cmdargs = desispec.scripts.specex.parse(cmdargs) if comm_group.rank == 0: print('RUNNING: {}'.format(cmds[camera])) t0 = time.time() timestamp = time.asctime() log.info( f'MPI group {group} ranks {rank}-{rank+group_size-1} fitting PSF for {camera} at {timestamp}' ) try: desispec.scripts.specex.main(cmdargs, comm=comm_group) except Exception as e: if comm_group.rank == 0: log.error( f'FAILED: MPI group {group} ranks {rank}-{rank+group_size-1} camera {camera}' ) log.error('FAILED: {}'.format(cmds[camera])) log.error(e) if comm_group.rank == 0: specex_time = time.time() - t0 log.info( f'specex fit for {camera} took {specex_time:.1f} seconds' ) comm.barrier() else: log.warning( 'fitting PSFs without MPI parallelism; this will be SLOW') for camera in args.cameras: if camera in cmds: runcmd(cmds[camera], inputs=inputs[camera], outputs=outputs[camera]) if comm is not None: comm.barrier() # loop on all cameras and interpolate bad fibers for camera in args.cameras[rank::size]: t0 = time.time() log.info(f'Rank {rank} interpolating {camera} PSF over bad fibers') # look for fiber blacklist cfinder = CalibFinder([hdr, camhdr[camera]]) blacklistkey = "FIBERBLACKLIST" if not cfinder.haskey(blacklistkey) and cfinder.haskey( "BROKENFIBERS"): log.warning( "BROKENFIBERS yaml keyword deprecated, please use FIBERBLACKLIST" ) blacklistkey = "BROKENFIBERS" if cfinder.haskey(blacklistkey): fiberblacklist = cfinder.value(blacklistkey) tmpname = findfile('psf', args.night, args.expid, camera) inpsf = replace_prefix(tmpname, "psf", "fit-psf") outpsf = replace_prefix(tmpname, "psf", "fit-psf-fixed-blacklisted") if os.path.isfile(inpsf) and not os.path.isfile(outpsf): cmd = 'desi_interpolate_fiber_psf' cmd += ' --infile {}'.format(inpsf) cmd += ' --outfile {}'.format(outpsf) cmd += ' --fibers {}'.format(fiberblacklist) log.info( 'For camera {} interpolating PSF for broken fibers: {}' .format(camera, fiberblacklist)) runcmd(cmd, inputs=[inpsf], outputs=[outpsf]) if os.path.isfile(outpsf): os.rename( inpsf, inpsf.replace("fit-psf", "fit-psf-before-blacklisted-fix")) subprocess.call('cp {} {}'.format(outpsf, inpsf), shell=True) dt = time.time() - t0 log.info( f'Rank {rank} {camera} PSF interpolation took {dt:.1f} sec') timer.stop('psf') #------------------------------------------------------------------------- #- Merge PSF of night if applicable #if args.obstype in ['ARC']: if False: if rank == 0: for camera in args.cameras: psfnightfile = findfile('psfnight', args.night, args.expid, camera) if not os.path.isfile( psfnightfile ): # we still don't have a psf night, see if we can compute it ... psfs = glob.glob( findfile('psf', args.night, args.expid, camera).replace("psf", "fit-psf").replace( str(args.expid), "*")) log.info( "Number of PSF for night={} camera={} = {}".format( args.night, camera, len(psfs))) if len(psfs) > 4: # lets do it! log.info("Computing psfnight ...") dirname = os.path.dirname(psfnightfile) if not os.path.isdir(dirname): os.makedirs(dirname) desispec.scripts.specex.mean_psf(psfs, psfnightfile) if os.path.isfile(psfnightfile): # now use this one input_psf[camera] = psfnightfile #------------------------------------------------------------------------- #- Extract #- This is MPI parallel so handle a bit differently # maybe add ARC and TESTARC too if ( args.obstype in ['FLAT', 'TESTFLAT', 'SKY', 'TWILIGHT'] ) or \ ( args.obstype in ['SCIENCE'] and (not args.noprestdstarfit) ): timer.start('extract') if rank == 0: log.info('Starting extractions at {}'.format(time.asctime())) if rank > 0: cmds = inputs = outputs = None else: cmds = dict() inputs = dict() outputs = dict() for camera in args.cameras: cmd = 'desi_extract_spectra' #- Based on data from SM1-SM8, looking at central and edge fibers #- with in mind overlapping arc lamps lines if camera.startswith('b'): cmd += ' -w 3600.0,5800.0,0.8' elif camera.startswith('r'): cmd += ' -w 5760.0,7620.0,0.8' elif camera.startswith('z'): cmd += ' -w 7520.0,9824.0,0.8' preprocfile = findfile('preproc', args.night, args.expid, camera) psffile = findfile('psf', args.night, args.expid, camera) framefile = findfile('frame', args.night, args.expid, camera) cmd += ' -i {}'.format(preprocfile) cmd += ' -p {}'.format(psffile) cmd += ' -o {}'.format(framefile) cmd += ' --psferr 0.1' if args.obstype == 'SCIENCE' or args.obstype == 'SKY': if rank == 0: log.info('Include barycentric correction') cmd += ' --barycentric-correction' if not os.path.exists(framefile): cmds[camera] = cmd inputs[camera] = [preprocfile, psffile] outputs[camera] = [ framefile, ] #- TODO: refactor/combine this with PSF comm splitting logic if comm is not None: cmds = comm.bcast(cmds, root=0) inputs = comm.bcast(inputs, root=0) outputs = comm.bcast(outputs, root=0) #- split communicator by 20 (number of bundles) extract_size = 20 if (rank == 0) and (size % extract_size != 0): log.warning( 'MPI size={} should be evenly divisible by {}'.format( size, extract_size)) extract_group = rank // extract_size num_extract_groups = (size + extract_size - 1) // extract_size comm_extract = comm.Split(color=extract_group) for i in range(extract_group, len(args.cameras), num_extract_groups): camera = args.cameras[i] if camera in cmds: cmdargs = cmds[camera].split()[1:] extract_args = desispec.scripts.extract.parse(cmdargs) if comm_extract.rank == 0: print('RUNNING: {}'.format(cmds[camera])) desispec.scripts.extract.main_mpi(extract_args, comm=comm_extract) comm.barrier() else: log.warning( 'running extractions without MPI parallelism; this will be SLOW' ) for camera in args.cameras: if camera in cmds: runcmd(cmds[camera], inputs=inputs[camera], outputs=outputs[camera]) timer.stop('extract') if comm is not None: comm.barrier() #------------------------------------------------------------------------- #- Fiberflat if args.obstype in ['FLAT', 'TESTFLAT']: timer.start('fiberflat') if rank == 0: log.info('Starting fiberflats at {}'.format(time.asctime())) for i in range(rank, len(args.cameras), size): camera = args.cameras[i] framefile = findfile('frame', args.night, args.expid, camera) fiberflatfile = findfile('fiberflat', args.night, args.expid, camera) cmd = "desi_compute_fiberflat" cmd += " -i {}".format(framefile) cmd += " -o {}".format(fiberflatfile) runcmd(cmd, inputs=[ framefile, ], outputs=[ fiberflatfile, ]) timer.stop('fiberflat') if comm is not None: comm.barrier() #------------------------------------------------------------------------- #- Average and auto-calib fiberflats of night if applicable #if args.obstype in ['FLAT']: if False: if rank == 0: fiberflatnightfile = findfile('fiberflatnight', args.night, args.expid, args.cameras[0]) fiberflatdirname = os.path.dirname(fiberflatnightfile) if not os.path.isfile(fiberflatnightfile) and len( args.cameras ) >= 6: # we still don't have them, see if we can compute them, but need at least 2 spectros ... flats = glob.glob( findfile('fiberflat', args.night, args.expid, "b0").replace(str(args.expid), "*").replace("b0", "*")) log.info("Number of fiberflat for night {} = {}".format( args.night, len(flats))) if len(flats) >= 3 * 4 * len( args.cameras ): # lets do it! (3 exposures x 4 lamps x N cameras) log.info( "Computing fiberflatnight per lamp and camera ...") tmpdir = os.path.join(fiberflatdirname, "tmp") if not os.path.isdir(tmpdir): os.makedirs(tmpdir) log.info( "First average measurements per camera and per lamp") average_flats = dict() for camera in args.cameras: # list of flats for this camera flats_for_this_camera = [] for flat in flats: if flat.find(camera) >= 0: flats_for_this_camera.append(flat) #log.info("For camera {} , flats = {}".format(camera,flats_for_this_camera)) #sys.exit(12) # average per lamp (and camera) average_flats[camera] = list() for lampbox in range(4): ofile = os.path.join( tmpdir, "fiberflatnight-camera-{}-lamp-{}.fits".format( camera, lampbox)) if not os.path.isfile(ofile): log.info( "Average flat for camera {} and lamp box #{}" .format(camera, lampbox)) pg = "CALIB DESI-CALIB-0{} LEDs only".format( lampbox) cmd = "desi_average_fiberflat --program '{}' --outfile {} -i ".format( pg, ofile) for flat in flats_for_this_camera: cmd += " {} ".format(flat) runcmd(cmd, inputs=flats_for_this_camera, outputs=[ ofile, ]) if os.path.isfile(ofile): average_flats[camera].append(ofile) else: log.info("Will use existing {}".format(ofile)) average_flats[camera].append(ofile) log.info( "Auto-calibration across lamps and spectro per camera arm (b,r,z)" ) for camera_arm in ["b", "r", "z"]: cameras_for_this_arm = [] flats_for_this_arm = [] for camera in args.cameras: if camera[0].lower() == camera_arm: cameras_for_this_arm.append(camera) if camera in average_flats: for flat in average_flats[camera]: flats_for_this_arm.append(flat) cmd = "desi_autocalib_fiberflat --night {} --arm {} -i ".format( args.night, camera_arm) for flat in flats_for_this_arm: cmd += " {} ".format(flat) runcmd(cmd, inputs=flats_for_this_arm, outputs=[]) log.info("Done with fiber flats per night") if comm is not None: comm.barrier() #------------------------------------------------------------------------- #- Get input fiberflat if args.obstype in ['SCIENCE', 'SKY'] and (not args.nofiberflat): timer.start('find_fiberflat') input_fiberflat = dict() if rank == 0: for camera in args.cameras: if args.fiberflat is not None: input_fiberflat[camera] = args.fiberflat elif args.calibnight is not None: # look for a fiberflatnight for this calib night fiberflatnightfile = findfile('fiberflatnight', args.calibnight, args.expid, camera) if not os.path.isfile(fiberflatnightfile): log.error("no {}".format(fiberflatnightfile)) raise IOError("no {}".format(fiberflatnightfile)) input_fiberflat[camera] = fiberflatnightfile else: # look for a fiberflatnight fiberflat fiberflatnightfile = findfile('fiberflatnight', args.night, args.expid, camera) if os.path.isfile(fiberflatnightfile): input_fiberflat[camera] = fiberflatnightfile elif args.most_recent_calib: nightfile = find_most_recent( args.night, file_type='fiberflatnight') if nightfile is None: input_fiberflat[camera] = findcalibfile( [hdr, camhdr[camera]], 'FIBERFLAT') else: input_fiberflat[camera] = nightfile else: input_fiberflat[camera] = findcalibfile( [hdr, camhdr[camera]], 'FIBERFLAT') log.info("Will use input FIBERFLAT: {}".format( input_fiberflat[camera])) if comm is not None: input_fiberflat = comm.bcast(input_fiberflat, root=0) timer.stop('find_fiberflat') #------------------------------------------------------------------------- #- Apply fiberflat and write fframe file if args.obstype in ['SCIENCE', 'SKY'] and args.fframe and \ ( not args.nofiberflat ) and (not args.noprestdstarfit): timer.start('apply_fiberflat') if rank == 0: log.info('Applying fiberflat at {}'.format(time.asctime())) for i in range(rank, len(args.cameras), size): camera = args.cameras[i] fframefile = findfile('fframe', args.night, args.expid, camera) if not os.path.exists(fframefile): framefile = findfile('frame', args.night, args.expid, camera) fr = desispec.io.read_frame(framefile) flatfilename = input_fiberflat[camera] if flatfilename is not None: ff = desispec.io.read_fiberflat(flatfilename) fr.meta['FIBERFLT'] = desispec.io.shorten_filename( flatfilename) apply_fiberflat(fr, ff) fframefile = findfile('fframe', args.night, args.expid, camera) desispec.io.write_frame(fframefile, fr) else: log.warning( "Missing fiberflat for camera {}".format(camera)) timer.stop('apply_fiberflat') if comm is not None: comm.barrier() #------------------------------------------------------------------------- #- Select random sky fibers (inplace update of frame file) #- TODO: move this to a function somewhere #- TODO: this assigns different sky fibers to each frame of same spectrograph if (args.obstype in [ 'SKY', 'SCIENCE' ]) and (not args.noskysub) and (not args.noprestdstarfit): timer.start('picksky') if rank == 0: log.info('Picking sky fibers at {}'.format(time.asctime())) for i in range(rank, len(args.cameras), size): camera = args.cameras[i] framefile = findfile('frame', args.night, args.expid, camera) orig_frame = desispec.io.read_frame(framefile) #- Make a copy so that we can apply fiberflat fr = deepcopy(orig_frame) if np.any(fr.fibermap['OBJTYPE'] == 'SKY'): log.info('{} sky fibers already set; skipping'.format( os.path.basename(framefile))) continue #- Apply fiberflat then select random fibers below a flux cut flatfilename = input_fiberflat[camera] if flatfilename is None: log.error("No fiberflat for {}".format(camera)) continue ff = desispec.io.read_fiberflat(flatfilename) apply_fiberflat(fr, ff) sumflux = np.sum(fr.flux, axis=1) fluxcut = np.percentile(sumflux, 30) iisky = np.where(sumflux < fluxcut)[0] iisky = np.random.choice(iisky, size=100, replace=False) #- Update fibermap or original frame and write out orig_frame.fibermap['OBJTYPE'][iisky] = 'SKY' orig_frame.fibermap['DESI_TARGET'][iisky] |= desi_mask.SKY desispec.io.write_frame(framefile, orig_frame) timer.stop('picksky') if comm is not None: comm.barrier() #------------------------------------------------------------------------- #- Sky subtraction if args.obstype in [ 'SCIENCE', 'SKY' ] and (not args.noskysub) and (not args.noprestdstarfit): timer.start('skysub') if rank == 0: log.info('Starting sky subtraction at {}'.format(time.asctime())) for i in range(rank, len(args.cameras), size): camera = args.cameras[i] framefile = findfile('frame', args.night, args.expid, camera) hdr = fitsio.read_header(framefile, 'FLUX') fiberflatfile = input_fiberflat[camera] if fiberflatfile is None: log.error("No fiberflat for {}".format(camera)) continue skyfile = findfile('sky', args.night, args.expid, camera) cmd = "desi_compute_sky" cmd += " -i {}".format(framefile) cmd += " --fiberflat {}".format(fiberflatfile) cmd += " --o {}".format(skyfile) if args.no_extra_variance: cmd += " --no-extra-variance" if not args.no_sky_wavelength_adjustment: cmd += " --adjust-wavelength" if not args.no_sky_lsf_adjustment: cmd += " --adjust-lsf" runcmd(cmd, inputs=[framefile, fiberflatfile], outputs=[ skyfile, ]) #- sframe = flatfielded sky-subtracted but not flux calibrated frame #- Note: this re-reads and re-does steps previously done for picking #- sky fibers; desi_proc is about human efficiency, #- not I/O or CPU efficiency... sframefile = desispec.io.findfile('sframe', args.night, args.expid, camera) if not os.path.exists(sframefile): frame = desispec.io.read_frame(framefile) fiberflat = desispec.io.read_fiberflat(fiberflatfile) sky = desispec.io.read_sky(skyfile) apply_fiberflat(frame, fiberflat) subtract_sky(frame, sky, apply_throughput_correction=True) frame.meta['IN_SKY'] = shorten_filename(skyfile) frame.meta['FIBERFLT'] = shorten_filename(fiberflatfile) desispec.io.write_frame(sframefile, frame) timer.stop('skysub') if comm is not None: comm.barrier() #------------------------------------------------------------------------- #- Standard Star Fitting if args.obstype in ['SCIENCE',] and \ (not args.noskysub ) and \ (not args.nostdstarfit) : timer.start('stdstarfit') if rank == 0: log.info('Starting flux calibration at {}'.format(time.asctime())) #- Group inputs by spectrograph framefiles = dict() skyfiles = dict() fiberflatfiles = dict() night, expid = args.night, args.expid #- shorter for camera in args.cameras: sp = int(camera[1]) if sp not in framefiles: framefiles[sp] = list() skyfiles[sp] = list() fiberflatfiles[sp] = list() framefiles[sp].append(findfile('frame', night, expid, camera)) skyfiles[sp].append(findfile('sky', night, expid, camera)) fiberflatfiles[sp].append(input_fiberflat[camera]) #- Hardcoded stdstar model version starmodels = os.path.join(os.getenv('DESI_BASIS_TEMPLATES'), 'stdstar_templates_v2.2.fits') #- Fit stdstars per spectrograph (not per-camera) spectro_nums = sorted(framefiles.keys()) ## for sp in spectro_nums[rank::size]: for i in range(rank, len(spectro_nums), size): sp = spectro_nums[i] stdfile = findfile('stdstars', night, expid, spectrograph=sp) cmd = "desi_fit_stdstars" cmd += " --frames {}".format(' '.join(framefiles[sp])) cmd += " --skymodels {}".format(' '.join(skyfiles[sp])) cmd += " --fiberflats {}".format(' '.join(fiberflatfiles[sp])) cmd += " --starmodels {}".format(starmodels) cmd += " --outfile {}".format(stdfile) cmd += " --delta-color 0.1" if args.maxstdstars is not None: cmd += " --maxstdstars {}".format(args.maxstdstars) inputs = framefiles[sp] + skyfiles[sp] + fiberflatfiles[sp] runcmd(cmd, inputs=inputs, outputs=[stdfile]) timer.stop('stdstarfit') if comm is not None: comm.barrier() # ------------------------------------------------------------------------- # - Flux calibration if args.obstype in ['SCIENCE'] and \ (not args.noskysub) and \ (not args.nofluxcalib): timer.start('fluxcalib') night, expid = args.night, args.expid #- shorter #- Compute flux calibration vectors per camera for camera in args.cameras[rank::size]: framefile = findfile('frame', night, expid, camera) skyfile = findfile('sky', night, expid, camera) spectrograph = int(camera[1]) stdfile = findfile('stdstars', night, expid, spectrograph=spectrograph) calibfile = findfile('fluxcalib', night, expid, camera) fiberflatfile = input_fiberflat[camera] cmd = "desi_compute_fluxcalibration" cmd += " --infile {}".format(framefile) cmd += " --sky {}".format(skyfile) cmd += " --fiberflat {}".format(fiberflatfile) cmd += " --models {}".format(stdfile) cmd += " --outfile {}".format(calibfile) cmd += " --delta-color-cut 0.1" inputs = [framefile, skyfile, fiberflatfile, stdfile] runcmd(cmd, inputs=inputs, outputs=[ calibfile, ]) timer.stop('fluxcalib') if comm is not None: comm.barrier() #------------------------------------------------------------------------- #- Applying flux calibration if args.obstype in [ 'SCIENCE', ] and (not args.noskysub) and (not args.nofluxcalib): night, expid = args.night, args.expid #- shorter timer.start('applycalib') if rank == 0: log.info('Starting cframe file creation at {}'.format( time.asctime())) for camera in args.cameras[rank::size]: framefile = findfile('frame', night, expid, camera) skyfile = findfile('sky', night, expid, camera) spectrograph = int(camera[1]) stdfile = findfile('stdstars', night, expid, spectrograph=spectrograph) calibfile = findfile('fluxcalib', night, expid, camera) cframefile = findfile('cframe', night, expid, camera) fiberflatfile = input_fiberflat[camera] cmd = "desi_process_exposure" cmd += " --infile {}".format(framefile) cmd += " --fiberflat {}".format(fiberflatfile) cmd += " --sky {}".format(skyfile) cmd += " --calib {}".format(calibfile) cmd += " --outfile {}".format(cframefile) cmd += " --cosmics-nsig 6" if args.no_xtalk: cmd += " --no-xtalk" inputs = [framefile, fiberflatfile, skyfile, calibfile] runcmd(cmd, inputs=inputs, outputs=[ cframefile, ]) if comm is not None: comm.barrier() timer.stop('applycalib') #------------------------------------------------------------------------- #- Wrap up # if rank == 0: # report = timer.report() # log.info('Rank 0 timing report:\n' + report) if comm is not None: timers = comm.gather(timer, root=0) else: timers = [ timer, ] if rank == 0: stats = desiutil.timer.compute_stats(timers) log.info('Timing summary statistics:\n' + json.dumps(stats, indent=2)) if args.timingfile: if os.path.exists(args.timingfile): with open(args.timingfile) as fx: previous_stats = json.load(fx) #- augment previous_stats with new entries, but don't overwrite old for name in stats: if name not in previous_stats: previous_stats[name] = stats[name] stats = previous_stats tmpfile = args.timingfile + '.tmp' with open(tmpfile, 'w') as fx: json.dump(stats, fx, indent=2) os.rename(tmpfile, args.timingfile) if rank == 0: log.info('All done at {}'.format(time.asctime()))
def main(args): log = get_logger() cmd = [ 'desi_compute_fluxcalibration', ] for key, value in args.__dict__.items(): if value is not None: cmd += ['--' + key, str(value)] cmd = ' '.join(cmd) log.info(cmd) log.info("read frame") # read frame frame = read_frame(args.infile) # Set fibermask flagged spectra to have 0 flux and variance frame = get_fiberbitmasked_frame(frame, bitmask='flux', ivar_framemask=True) log.info("apply fiberflat") # read fiberflat fiberflat = read_fiberflat(args.fiberflat) # apply fiberflat apply_fiberflat(frame, fiberflat) log.info("subtract sky") # read sky skymodel = read_sky(args.sky) # subtract sky subtract_sky(frame, skymodel) log.info("compute flux calibration") # read models model_flux, model_wave, model_fibers, model_metadata = read_stdstar_models( args.models) ok = np.ones(len(model_metadata), dtype=bool) if args.chi2cut > 0: log.info("apply cut CHI2DOF<{}".format(args.chi2cut)) good = (model_metadata["CHI2DOF"] < args.chi2cut) bad = ~good ok &= good if np.any(bad): log.info(" discard {} stars with CHI2DOF= {}".format( np.sum(bad), list(model_metadata["CHI2DOF"][bad]))) legacy_filters = ('G-R', 'R-Z') gaia_filters = ('GAIA-BP-RP', 'GAIA-G-RP') model_column_list = model_metadata.columns.names if args.color is None: if 'MODEL_G-R' in model_column_list: color = 'G-R' elif 'MODEL_GAIA-BP-RP' in model_column_list: log.info('Using Gaia filters') color = 'GAIA-BP-RP' else: log.error( "Can't find either G-R or BP-RP color in the model file.") sys.exit(15) else: if args.color not in legacy_filters and args.color not in gaia_filters: log.error( 'Color name {} is not allowed, must be one of {} {}'.format( args.color, legacy_filters, gaia_filters)) sys.exit(14) color = args.color if color not in model_column_list: # This should't happen log.error( 'The color {} was not computed in the models'.format(color)) sys.exit(16) if args.delta_color_cut > 0: log.info("apply cut |delta color|<{}".format(args.delta_color_cut)) good = (np.abs(model_metadata["MODEL_" + color] - model_metadata["DATA_" + color]) < args.delta_color_cut) bad = ok & (~good) ok &= good if np.any(bad): vals = model_metadata["MODEL_" + color][bad] - model_metadata["DATA_" + color][bad] log.info(" discard {} stars with dcolor= {}".format( np.sum(bad), list(vals))) if args.min_color is not None: log.info("apply cut DATA_{}>{}".format(color, args.min_color)) good = (model_metadata["DATA_{}".format(color)] > args.min_color) bad = ok & (~good) ok &= good if np.any(bad): vals = model_metadata["DATA_{}".format(color)][bad] log.info(" discard {} stars with {}= {}".format( np.sum(bad), color, list(vals))) if args.chi2cut_nsig > 0: # automatically reject stars that ar chi2 outliers mchi2 = np.median(model_metadata["CHI2DOF"]) rmschi2 = np.std(model_metadata["CHI2DOF"]) maxchi2 = mchi2 + args.chi2cut_nsig * rmschi2 log.info("apply cut CHI2DOF<{} based on chi2cut_nsig={}".format( maxchi2, args.chi2cut_nsig)) good = (model_metadata["CHI2DOF"] <= maxchi2) bad = ok & (~good) ok &= good if np.any(bad): log.info(" discard {} stars with CHI2DOF={}".format( np.sum(bad), list(model_metadata["CHI2DOF"][bad]))) ok = np.where(ok)[0] if ok.size == 0: log.error("selection cuts discarded all stars") sys.exit(12) nstars = model_flux.shape[0] nbad = nstars - ok.size if nbad > 0: log.warning("discarding %d star(s) out of %d because of cuts" % (nbad, nstars)) model_flux = model_flux[ok] model_fibers = model_fibers[ok] model_metadata = model_metadata[:][ok] # check that the model_fibers are actually standard stars fibermap = frame.fibermap ## check whether star fibers from args.models are consistent with fibers from fibermap ## if not print the OBJTYPE from fibermap for the fibers numbers in args.models and exit fibermap_std_indices = np.where(isStdStar(fibermap))[0] if np.any(~np.in1d(model_fibers % 500, fibermap_std_indices)): target_colnames, target_masks, survey = main_cmx_or_sv(fibermap) colname = target_colnames[0] for i in model_fibers % 500: log.error( "inconsistency with spectrum {}, OBJTYPE={}, {}={} in fibermap" .format(i, fibermap["OBJTYPE"][i], colname, fibermap[colname][i])) sys.exit(12) # Make sure the fibers of interest aren't entirely masked. if np.sum( np.sum(frame.ivar[model_fibers % 500, :] == 0, axis=1) == frame.nwave) == len(model_fibers): log.warning('All standard-star spectra are masked!') return fluxcalib = compute_flux_calibration( frame, model_wave, model_flux, model_fibers % 500, highest_throughput_nstars=args.highest_throughput, exposure_seeing_fwhm=args.seeing_fwhm) # QA if (args.qafile is not None): from desispec.io import write_qa_frame from desispec.io.qa import load_qa_frame from desispec.qa import qa_plots log.info("performing fluxcalib QA") # Load qaframe = load_qa_frame(args.qafile, frame_meta=frame.meta, flavor=frame.meta['FLAVOR']) # Run #import pdb; pdb.set_trace() qaframe.run_qa('FLUXCALIB', (frame, fluxcalib)) # Write if args.qafile is not None: write_qa_frame(args.qafile, qaframe) log.info("successfully wrote {:s}".format(args.qafile)) # Figure(s) if args.qafig is not None: qa_plots.frame_fluxcalib(args.qafig, qaframe, frame, fluxcalib) # record inputs frame.meta['IN_FRAME'] = shorten_filename(args.infile) frame.meta['IN_SKY'] = shorten_filename(args.sky) frame.meta['FIBERFLT'] = shorten_filename(args.fiberflat) frame.meta['STDMODEL'] = shorten_filename(args.models) # write result write_flux_calibration(args.outfile, fluxcalib, header=frame.meta) log.info("successfully wrote %s" % args.outfile)
def main(args): log = get_logger() if (args.fiberflat is None) and (args.sky is None) and (args.calib is None): log.critical('no --fiberflat, --sky, or --calib; nothing to do ?!?') sys.exit(12) if (not args.no_tsnr) and (args.calib is None): log.critical( 'need --fiberflat --sky and --calib to compute template SNR') sys.exit(12) frame = read_frame(args.infile) if not args.no_tsnr: # tsnr alpha calc. requires uncalibrated + no substraction rame. uncalibrated_frame = copy.deepcopy(frame) #- Raw scores already added in extraction, but just in case they weren't #- it is harmless to rerun to make sure we have them. compute_and_append_frame_scores(frame, suffix="RAW") if args.cosmics_nsig > 0 and args.sky == None: # Reject cosmics (otherwise do it after sky subtraction) log.info("cosmics ray 1D rejection") reject_cosmic_rays_1d(frame, args.cosmics_nsig) if args.fiberflat != None: log.info("apply fiberflat") # read fiberflat fiberflat = read_fiberflat(args.fiberflat) # apply fiberflat to all fibers apply_fiberflat(frame, fiberflat) compute_and_append_frame_scores(frame, suffix="FFLAT") else: fiberflat = None if args.no_xtalk: zero_ivar = (not args.no_zero_ivar) else: zero_ivar = False if args.sky != None: # read sky skymodel = read_sky(args.sky) if args.cosmics_nsig > 0: # use a copy the frame (not elegant but robust) copied_frame = copy.deepcopy(frame) # first subtract sky without throughput correction subtract_sky(copied_frame, skymodel, apply_throughput_correction=False, zero_ivar=zero_ivar) # then find cosmics log.info("cosmics ray 1D rejection after sky subtraction") reject_cosmic_rays_1d(copied_frame, args.cosmics_nsig) # copy mask frame.mask = copied_frame.mask # and (re-)subtract sky, but just the correction term subtract_sky(frame, skymodel, apply_throughput_correction=( not args.no_sky_throughput_correction), zero_ivar=zero_ivar) else: # subtract sky subtract_sky(frame, skymodel, apply_throughput_correction=( not args.no_sky_throughput_correction), zero_ivar=zero_ivar) compute_and_append_frame_scores(frame, suffix="SKYSUB") if not args.no_xtalk: log.info("fiber crosstalk correction") correct_fiber_crosstalk(frame, fiberflat) if not args.no_zero_ivar: frame.ivar *= (frame.mask == 0) if args.calib != None: log.info("calibrate") # read calibration fluxcalib = read_flux_calibration(args.calib) # apply calibration apply_flux_calibration(frame, fluxcalib) # Ensure that ivars are set to 0 for all values if any designated # fibermask bit is set. Also flips a bits for each frame.mask value using specmask.BADFIBER frame = get_fiberbitmasked_frame( frame, bitmask="flux", ivar_framemask=(not args.no_zero_ivar)) compute_and_append_frame_scores(frame, suffix="CALIB") if not args.no_tsnr: log.info("calculating tsnr") results, alpha = calc_tsnr2(uncalibrated_frame, fiberflat=fiberflat, skymodel=skymodel, fluxcalib=fluxcalib, alpha_only=args.alpha_only) frame.meta['TSNRALPH'] = alpha comments = {k: "from calc_frame_tsnr" for k in results.keys()} append_frame_scores(frame, results, comments, overwrite=True) # record inputs frame.meta['IN_FRAME'] = shorten_filename(args.infile) frame.meta['FIBERFLT'] = shorten_filename(args.fiberflat) frame.meta['IN_SKY'] = shorten_filename(args.sky) frame.meta['IN_CALIB'] = shorten_filename(args.calib) # save output write_frame(args.outfile, frame, units='10**-17 erg/(s cm2 Angstrom)') log.info("successfully wrote %s" % args.outfile)