def test_classify(index, expected): query = np.atleast_2d([1, 1]) knop_test = KNOP(create_pool_classifiers()) knop_test.fit(X_dsel_ex1, y_dsel_ex1) knop_test.DFP_mask = np.ones(knop_test.n_classifiers) knop_test.neighbors = neighbors_ex1[index, :] knop_test.distances = distances_ex1[index, :] prediction = knop_test.classify_instance(query) assert prediction == expected
def test_classify(index, expected): query = np.atleast_2d([1, 1]) knop_test = KNOP(create_pool_classifiers()) knop_test.fit(X_dsel_ex1, y_dsel_ex1) knop_test.DFP_mask = np.ones(knop_test.n_classifiers) knop_test.neighbors = neighbors_ex1[index, :] knop_test.distances = distances_ex1[index, :] predictions = [] for clf in knop_test.pool_classifiers: predictions.append(clf.predict(query)[0]) predicted_label = knop_test.classify_instance(query, np.array(predictions)) assert predicted_label == expected