Example #1
0
    def test_polish(self):
        solver = desolver.DESolver(error_func,
                                   [(-100,100)]*3, 30, 200,
                                   method = desolver.DE_RAND_1,
                                   args=[self.xData,self.yData],
                                   scale=0.8, crossover_prob=0.9,
                                   goal_error=.01, polish=True, verbose=False,
                                   use_pp = False, pp_modules=['numpy'])

        assert(solver.best_error <= .01)
Example #2
0
    def test_seed(self):
        solver = desolver.DESolver(error_func,
                                   [(-100,100)]*3, 30, 200,
                                   method = desolver.DE_LOCAL_TO_BEST_1,
                                   args=[self.xData,self.yData], 
                                   seed = numpy.random.uniform(-1,1,size=(4,3)),
                                   scale=0.5, crossover_prob=0.9,
                                   goal_error=.01, polish=False, verbose=False,
                                   use_pp = False, pp_modules=['numpy'])

        assert(solver.best_error <= .01)
Example #3
0
 def test_pickle(self):
     # run the example solver
     solver = desolver.DESolver(error_func,
                                [(-100,100)]*3, 30, 200,
                                method = desolver.DE_RAND_1,
                                args=[self.xData,self.yData],
                                scale=0.8, crossover_prob=0.9,
                                goal_error=.01, polish=False, verbose=False,
                                use_pp = False, pp_modules=['numpy'])
     # pickle and unpickle it
     pstr = pickle.dumps(solver)
     solver2 = pickle.loads(pstr)
Example #4
0
    xData = numpy.array([5.357, 9.861, 5.457, 5.936, 6.161, 6.731])
    yData = numpy.array([0.376, 7.104, 0.489, 1.049, 1.327, 2.077])

    # start timer
    tStart = time.time()

    # set up the solver
    solver = desolver.DESolver(
        dep_error_func,
        [(-100, 100)] * 3,
        30,
        600,
        #method = desolver.DE_BEST_1,
        #method = desolver.DE_BEST_1_JITTER,
        #method = desolver.DE_LOCAL_TO_BEST_1,
        method=desolver.DE_RAND_1,
        args=[xData, yData],
        scale=[0.5, 1.0],
        crossover_prob=0.9,
        goal_error=.01,
        polish=False,
        verbose=True,
        use_pp=True,
        pp_modules=['global_fun'],
        pp_depfuncs=[])
    tElapsed = time.time() - tStart
    print
    print "Best generation:", solver.best_generation
    print "Best individual:", solver.best_individual
    print "Best error:", solver.best_error, \
          ": Elapsed time", tElapsed, \
          'seconds for', solver.generation+1, 'generation(s)'
Example #5
0
    return numpy.prod(30.*numpy.sign(-x[include]-5.12))

testbed1 = [(lambda x:(x*x).sum(),                   [-5.12]*3, [5.12]*3, 1e-6,3,10,0.9,0.1),   # NP changed from 5 to 10!
            (lambda x:(x[0]**2-x[1])**2+(1.-x[0])**2,[-2.048]*2,[2.048]*2,1e-6,2,10,0.9,0.9),
            (testbed1_3,                             [-5.12]*5, [5.12]*5, 1e-6,5,10,0.9,0.0)]

class Job:
    def __init__(self,costfunction):
        self.costfunction = costfunction
        self.nfe = 0
    def evaluateFitness(self,x):
        self.nfe += 1
        cost = self.costfunction(x)
        return -cost

nrepeat = 20
for iproblem,(cost,minbounds,maxbounds,VTR,npar,NP,F,CR) in enumerate(testbed1):
    job = Job(cost)
    solver = desolver.DESolver(job,NP,10000,minbounds,maxbounds,
                               F=F,CR=CR,strictbounds=False,verbose=False,
                               reltol=0.,abstol=0.,minfitnesstoreach=-VTR)
    print 'Problem %i' % iproblem
    nfes = []
    for ireplica in range(nrepeat):
        job.nfe = 0
        sol = solver.Solve()
        nfe = job.nfe
        print '   solution %i: %s, FV = %s, NFE=%i' % (ireplica,sol,-job.evaluateFitness(sol),nfe)
        nfes.append(job.nfe)
    print '   mean NFE = %i' % (float(sum(nfes))/len(nfes))