Example #1
0
class VideoFileCamera(Thread): 
    def __init__(self, video_file, queue): 
        super().__init__() 
        self.queue = queue 
        self.video_file = video_file 
        self.THRESHOLD = 0.25
        self.detecter = Detecter()
    def run(self):
        cap = cv2.VideoCapture(self.video_file)
        fps = cap.get(cv2.CAP_PROP_FPS) 
        delay = int(1000/fps)
        # detecter = Detecter()
        self.detecter.setup('./frozen_inference_graph.pb', './mscoco_label_map.pbtxt') 
        while(cap.isOpened()):
            _, frame = cap.read()
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

            # frame_ex = np.expand_dims(frame, axis=0)
            # (boxes, scores, classes, num) = self.detecter.detect(frame_ex)
            # self.detecter.viaulize(frame, boxes, classes, scores, self.THRESHOLD)
            self.queue.put(frame, timeout=2) 
            
            cv2.waitKey(delay) 
        
        cap.release() 
        cv2.destroyAllWindows()
Example #2
0
 def __init__(self, name, queue):
     super().__init__()
     self.name = name
     self.queue = queue
     self.THRESHOLD = 0.25
     self.detecter = Detecter()
     self.detecter.setup('./frozen_inference_graph.pb',
                         './mscoco_label_map.pbtxt')
     pass
Example #3
0
class Objectdetecter:
    def __init__(self):
        self.detecter = Detecter()
        self.detecter.setup(
            './data/ssd_mobilenet_v1/frozen_inference_graph.pb',
            './data/label_map.pbtxt')
        self.THRESHOLD = 0.8

    def __check(self, image):
        detect_image = np.copy(image)
        image = np.expand_dims(image, axis=0)
        (boxes, scores, classes, num) = self.detecter.detect(image)
        list = []
        self.detecter.viaulize(detect_image, boxes, classes, scores,
                               self.THRESHOLD)
        for output in zip(classes, scores, boxes):
            if output[1] >= self.THRESHOLD:
                y1, x1, y2, x2 = output[2]
                y = int((y2 - y1) * 480)
                list.append((output, y))

        return list, detect_image

    def order(self, image):
        lists, detect_image = self.__check(image)

        sign = 5
        tra = 5
        st = 300
        fw = 5

        for list in lists:
            if list[0][0] == 5:
                c = list[1]
                if c > sign:
                    return 'stopsign', detect_image

            elif list[0][0] == 6:
                c = list[1]
                if c > tra:
                    return 'trash', detect_image

            elif list[0][0] == 1:
                c = list[1]
                if c < st:
                    return 'stop', detect_image

            elif list[0][0] == 2:
                c = list[1]
                if c > fw:
                    return 'forward', detect_image

        return None, detect_image
def job():
    stack=[]
    PATH="data/images/"
    date=datetime.datetime.now().strftime("%Y-%m-%d")
    target =date+".mp4"
    os.mkdir(PATH+date)


    cam = cv2.VideoCapture("data/videos/" + target)
    minute=datetime.datetime.now().minute
    FPS = 1
    try:
        if not os.path.exists('data'):
            os.makedirs('data')
    except OSError:
        print('Error: Creating directory of data')


    currentframe = 0
    capture_rate = 60#int(cam.get(cv2.CAP_PROP_FPS))
    end_of_frame = cam.get(cv2.CAP_PROP_FRAME_COUNT)
    # print(end_of_frame)

    stat_of_frame =0# minute*(cam.get(cv2.CAP_PROP_FPS) * 60)

    # print(stat_of_frame)
    for i in range(TOTAL_MIN//SAMPLING_CYCLE):
        for j in range(SAMPLING_CYCLE):

            cam.set(cv2.CAP_PROP_POS_FRAMES, CAPTURE_CYCLE * (currentframe*FPS) + stat_of_frame)
            ret, frame = cam.read()

            if ret:
                # if currentframe % capture_rate == 0:
                name = 'data/frames/frame' + str(j) + '.jpg'
                cv2.imwrite(name, frame)
                if j == 0:
                    # print(PATH+date+'/'+str(i))
                    cv2.imwrite(PATH+date+'/'+str(i)+'.jpg', frame)
            else:
                break
            currentframe += 1


        result = Detecter.detect()
        output=round(result/CAPTURE_CYCLE,2)

        # print(datetime.datetime.now().strftime("%Y-%m-%d"),i,": Avg =",output)

        stack.append(output)

    plt.plot(range(TOTAL_MIN//SAMPLING_CYCLE),stack)
    plt.savefig(target+'result.png')

    mosaicer.process(PATH+date+'/')

    cam.release()
    cv2.destroyAllWindows()
Example #5
0
class ImageViewer(Thread):
    def __init__(self, name, queue):
        super().__init__()
        self.name = name
        self.queue = queue
        self.THRESHOLD = 0.25
        self.detecter = Detecter()
        self.detecter.setup('./frozen_inference_graph.pb',
                            './mscoco_label_map.pbtxt')
        pass

    def run(self):
        while (True):
            frame = self.queue.get(timeout=2)
            frame_ex = np.expand_dims(frame, axis=0)
            (boxes, scores, classes, num) = self.detecter.detect(frame_ex)
            self.detecter.viaulize(frame, boxes, classes, scores,
                                   self.THRESHOLD)
            cv2.imshow(self.name, frame)

            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
        cv2.destroyAllWindows()
        pass
Example #6
0
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    image_ex = np.expand_dims(frame, axis=0)
    (boxes, scores, classes, num) = detecter.detect(image_ex)

    detecter.viaulize(frame, boxes, classes, scores, THRESHOLD)
    cv2.imshow('people', frame)

def play1():
    print(path)
    
    cap = cv2.VideoCapture(path)

    while(cap.isOpened()):
        ret, frame = cap.read()        
        detect1(frame)
        
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    cap.release()
    cv2.destroyAllWindows()


if __name__ == "__main__":
    detecter = Detecter()
    detecter.setup('./frozen_inference_graph.pb','./mscoco_label_map.pbtxt')
    
    THRESHOLD = 0.3
    path = "vtest.avi"    
    
    t = Thread(target=play1, args=())
    t.start()
import cv2
import numpy as np
from picamera.array import PiRGBArray
from picamera import PiCamera
from detecter import Detecter

THRESHOLD = 0.3
detecter = Detecter()
detecter.setup('./frozen_inference_graph.pb', './mscoco_label_map.pbtxt')

# 파이카메라 준비
# 카메라 해상도
IM_WIDTH = 640
IM_HEIGHT = 480

# PiCamera 설정
camera = PiCamera()
camera.resolution = (IM_WIDTH, IM_HEIGHT)
camera.framerate = 10

rawCapture = PiRGBArray(camera, size=(IM_WIDTH, IM_HEIGHT))
rawCapture.truncate(0)

for frame1 in camera.capture_continuous(rawCapture,
                                        format="bgr",
                                        use_video_port=True):
    image = np.copy(frame1.array)
    image.setflags(write=1)
    image_ex = np.expand_dims(image, axis=0)
    # detection
    (boxes, scores, classes, num) = detecter.detect(image_ex)
Example #8
0
 def __init__(self, video_file, queue): 
     super().__init__() 
     self.queue = queue 
     self.video_file = video_file 
     self.THRESHOLD = 0.25
     self.detecter = Detecter()
Example #9
0
 def __init__(self):
     self.detecter = Detecter()
     self.detecter.setup(
         './data/ssd_mobilenet_v1/frozen_inference_graph.pb',
         './data/label_map.pbtxt')
     self.THRESHOLD = 0.8
import cv2
import os
from detecter import Detecter
from mosaicer import mosaicer
import schedule
import time
import datetime
import matplotlib.pyplot as plt
from config import SAMPLING_CYCLE,TOTAL_MIN,CAPTURE_CYCLE

Detecter = Detecter()
mosaicer = mosaicer()

def job():
    stack=[]
    PATH="data/images/"
    date=datetime.datetime.now().strftime("%Y-%m-%d")
    target =date+".mp4"
    os.mkdir(PATH+date)


    cam = cv2.VideoCapture("data/videos/" + target)
    minute=datetime.datetime.now().minute
    FPS = 1
    try:
        if not os.path.exists('data'):
            os.makedirs('data')
    except OSError:
        print('Error: Creating directory of data')