def detect(signal_queue, key, sensors_queue): detector = detection.Detector() while True: time.sleep(0.001) # update sensors data while True: try: ( detector.time, # detector.gpsRaw_position, # detector.gpsRaw_speed, detector.compassRaw, detector.camerasRaw), frame = sensors_queue.get( block=True, timeout=0.001) timer = time.time() detector.process() # send all signals except object detection to decider signal_queue.put((detector.signals, frame)) # detectedInfo(' '.join( # ['Detector frame:', str(frame), 'stage1: spend', str(int((time.time() - timer) * 1000)), 'ms'] # )) timer = time.time() detector.object_detection() # object detection updated signal_queue.put((detector.signals, frame)) # detectedInfo(' '.join( # ['Detector frame:', str(frame), 'stage2: spend', str(int((time.time() - timer) * 1000)), 'ms'] # )) except queue.Empty: pass
def __init__(self, detector=None, recognizer=None, scale=2, max_size=2048): if detector is None: detector = detection.Detector() if recognizer is None: recognizer = recognition.Recognizer() self.scale = scale self.detector = detector self.recognizer = recognizer self.max_size = max_size
import psycopg2 import sys import detection conn = psycopg2.connect('dbname=gis user=gis') run = "iaicoco" sensitives = ("car", "person", "truck") cur = conn.cursor() cur.execute( "SELECT id FROM panoramas WHERE authorised=0 AND id >= 9686 ORDER BY id") results = cur.fetchall() if (len(results) == 0): print("No Results") else: prob = 25 if (len(sys.argv) > 1): prob = int(sys.argv[1]) detector = detection.Detector(prob, run) for result in results: detector.detect(result[0])
def output(img_path, pipe, out_path): img_path = img_path[0] img = cv2.imread(img_path) # img = cv2.resize(img, (img.shape[1] // 2, img.shape[0] // 2)) predictions = pipe.recognize(images=[img])[0] drawn = tools.drawBoxes( image=img, boxes=predictions, boxes_format='predictions' ) print( 'Predicted:', [text for text, box in predictions] ) cv2.imwrite(out_path, drawn) validation = get_ocr_detector_dataset('test') generator_kwargs = {'width': 640, 'height': 640} validation_image_generator = datasets.get_detector_image_generator( labels=validation, **generator_kwargs ) detector = detection.Detector() detector.model.load_weights(f'model/{args.model}.h5') pipe = pipeline.Pipeline(detector=detector) for i, img in enumerate(validation): print('sdfsdf') print(img[0]) output(img, pipe, f'output_{i}.png')