input_dataframe = pandas.read_csv(input_file) value = np.array(input_dataframe['value']) prediction = np.array(input_dataframe['prediction']) prediction = np.array(input_dataframe['prediction']) label = np.array(input_dataframe['label']) prediction_training = np.array(input_dataframe['prediction_training']) prediction_training_stops = 0 for i in range(0, len(prediction_training)): if prediction_training[i] == 1: prediction_training_stops += 1 testing_value = value[prediction_training_stops:] testing_prediction = prediction[prediction_training_stops:] detector_instance = detector.detector(values=testing_value, predictions=testing_prediction) warp_distance = detector_instance.calculate_distances( comparision_window_size=dtw_window_size) threshold = detector_instance.set_threshold( training_ratio=training_ratio, max_multipler=threshold_max_multipler) positive_detection = detector_instance.get_anomalies() threshold_training_starts = prediction_training_stops threshold_training_size = int(len(testing_value) * training_ratio) threshold_ignore = np.zeros(threshold_training_starts) threshold_training = np.ones(threshold_training_size) threshold_testing = np.zeros( len(value) - threshold_training_starts - threshold_training_size) threshold_training_colomn = np.append(threshold_ignore,
from utils import visualization_utils as vis_util import numpy as np import cv2 from detector import detector from imutils import paths import os import time det = detector.detector() image_folder = 'data_voc' #imagePaths = paths.list_images(image_folder) imageNames = os.listdir(image_folder) # loop over the image paths for imageName in imageNames: #print(imageName) image = cv2.imread(image_folder + '/' + imageName) print(image_folder + '/' + imageName) h, w = image.shape[:2] (boxes, scores, classes, num, category_index) = det.detect_plate(image) # print(category_index)