def worker(input_q, output_q, cap_params, frame_processed): print(">> Loading frozen model for worker.") detection_graph, sess = detector_utils.load_inference_graph() sess = tf.compat.v1.Session(graph=detection_graph) while True: frame = input_q.get() if (frame is not None): '''Boxes contain coordinates for detected hands Scores contains condfidence levels If len(boxes) > 1, at least one hand is detected You can change the score_thresh value as desired''' boxes, scores = detector_utils.detect_objects( frame, detection_graph, sess) # Draws bounding boxes detector_utils.draw_box_on_image(cap_params['num_hands_detect'], cap_params["score_thresh"], scores, boxes, cap_params['im_width'], cap_params['im_height'], frame) # Adds frame annotated with bounding box to queue output_q.put(frame) frame_processed += 1 else: output_q.put(frame) sess.close()
def worker_hands(input_q, output_q): detection_graph, sess = detector_utils.load_inference_graph() sess = tf.Session(graph=detection_graph) while True: frame = input_q.get() if frame is not None: boxes, scores = detector_utils.detect_objects( frame, detection_graph, sess) output_q.put((boxes, scores)) else: output_q.put((boxes, scores)) sess.close()
box_padding = 0.12 checkpoint_path = '../extra/model/east_icdar2015_resnet_v1_50_rbox' #get the start time start_time = datetime.datetime.now() #max number of hands we want to detect num_hands_detect = 1 score_thresh = 0.4 timer_start = 0 #load hands detection model detection_graph, sess1 = detector_utils.load_inference_graph() timer = 0 #flag indicating whether the patient finish the whole process finished = 0 hands = [] def main(argv=None): global im process_start = time.time() #location of the instructions
import numpy as np import keras from keras.models import Model, load_model from keras.preprocessing import image as KerasImage import cv2 import string import random import requests import os TrashRoutes = Blueprint('TrashRoutes', __name__) detection_graph, session = load_inference_graph() MIN_THRESHOLD = 0.5 prediction_list=['cardboard', 'glass', 'trash', 'paper', 'plastic', 'trash'] # with CustomObjectScope({'relu6': ReLU,'DepthwiseConv2D': DepthwiseConv2D}): model=load_model('trained_model.h5') model._make_predict_function() labels={0: 'cardboard', 1: 'glass', 2: 'trash', 3: 'paper', 4: 'plastic', 5: 'trash'} @TrashRoutes.route('/trashAll/', methods=["GET"]) def get_all_trash(): trash = Trash.query.all() return jsonify([t.serialize() for t in trash])
def __init__(self): self.detection_graph, self.sess = detector_utils.load_inference_graph()