Example #1
0
def recognize_from_video():
    # net initialize
    detector = ailia.Detector(
        MODEL_PATH,
        WEIGHT_PATH,
        len(FACE_CATEGORY),
        format=ailia.NETWORK_IMAGE_FORMAT_RGB,
        channel=ailia.NETWORK_IMAGE_CHANNEL_FIRST,
        range=ailia.NETWORK_IMAGE_RANGE_S_FP32,
        algorithm=ailia.DETECTOR_ALGORITHM_YOLOV1,
        env_id=args.env_id,
    )

    capture = webcamera_utils.get_capture(args.video)

    # create video writer if savepath is specified as video format
    if args.savepath != SAVE_IMAGE_PATH:
        writer = webcamera_utils.get_writer(args.savepath, IMAGE_HEIGHT,
                                            IMAGE_WIDTH)
    else:
        writer = None

    while (True):
        ret, frame = capture.read()
        if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
            break

        _, resized_img = webcamera_utils.adjust_frame_size(
            frame, IMAGE_HEIGHT, IMAGE_WIDTH)

        img = cv2.cvtColor(resized_img, cv2.COLOR_RGB2BGRA)
        detector.compute(img, THRESHOLD, IOU)
        res_img = plot_results(detector, resized_img, FACE_CATEGORY, False)
        cv2.imshow('frame', res_img)

        # save results
        if writer is not None:
            writer.write(res_img)

    capture.release()
    cv2.destroyAllWindows()
    if writer is not None:
        writer.release()
    print('Script finished successfully.')
Example #2
0
def recognize_from_image():
    # net initialize
    detector = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)

    # input image loop
    for image_path in args.input:
        # prepare input data
        logger.info(image_path)
        org_img = load_image(image_path)
        org_img = cv2.cvtColor(org_img, cv2.COLOR_BGRA2BGR)
        logger.debug(f'input image shape: {org_img.shape}')

        img = letterbox_convert(org_img, (IMAGE_HEIGHT, IMAGE_WIDTH))

        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = np.transpose(img, [2, 0, 1])
        img = img.astype(np.float32) / 255
        img = np.expand_dims(img, 0)

        # inference
        logger.info('Start inference...')
        if args.benchmark:
            logger.info('BENCHMARK mode')
            for i in range(5):
                start = int(round(time.time() * 1000))
                output = detector.predict([img])
                end = int(round(time.time() * 1000))
                logger.info(f'\tailia processing time {end - start} ms')
        else:
            output = detector.predict([img])

        detect_object = yolov4_utils.post_processing(img, args.threshold,
                                                     args.iou, output)
        detect_object = reverse_letterbox(detect_object[0], org_img,
                                          (IMAGE_HEIGHT, IMAGE_WIDTH))

        # plot result
        res_img = plot_results(detect_object, org_img, COCO_CATEGORY)

        # plot result
        savepath = get_savepath(args.savepath, image_path)
        logger.info(f'saved at : {savepath}')
        cv2.imwrite(savepath, res_img)
    logger.info('Script finished successfully.')
Example #3
0
def recognize_from_image():
    # net initialize
    detector = ailia.Detector(
        MODEL_PATH,
        WEIGHT_PATH,
        len(VOC_CATEGORY),
        format=ailia.NETWORK_IMAGE_FORMAT_RGB,
        channel=ailia.NETWORK_IMAGE_CHANNEL_FIRST,
        range=ailia.NETWORK_IMAGE_RANGE_S_FP32,
        algorithm=ailia.DETECTOR_ALGORITHM_YOLOV1,
        env_id=args.env_id,
    )
    if args.profile:
        detector.set_profile_mode(True)

    # input image loop
    for image_path in args.input:
        # prepare input data
        logger.info(image_path)
        img = load_image(image_path)
        logger.debug(f'input image shape: {img.shape}')

        # inference
        logger.info('Start inference...')
        if args.benchmark:
            logger.info('BENCHMARK mode')
            for i in range(5):
                start = int(round(time.time() * 1000))
                detector.compute(img, THRESHOLD, IOU)
                end = int(round(time.time() * 1000))
                logger.info(f'\tailia processing time {end - start} ms')
        else:
            detector.compute(img, THRESHOLD, IOU)

        # plot result
        res_img = plot_results(detector, img, VOC_CATEGORY)
        savepath = get_savepath(args.savepath, image_path)
        logger.info(f'saved at : {savepath}')
        cv2.imwrite(savepath, res_img)

    if args.profile:
        print(detector.get_summary())

    logger.info('Script finished successfully.')
Example #4
0
def recognize_from_image(filename, detector):
    if args.profile:
        detector.set_profile_mode(True)

    # load input image
    img = load_image(filename)
    img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)

    logger.info('Start inference...')
    if args.benchmark:
        logger.info('BENCHMARK mode')
        for i in range(5):
            start = int(round(time.time() * 1000))
            boxes, scores, cls_inds = detect_objects(img, detector)
            end = int(round(time.time() * 1000))
            logger.info(f'\tailia processing time {end - start} ms')
    else:
        boxes, scores, cls_inds = detect_objects(img, detector)

    try:
        logger.info('\n'.join([
            'pos:{}, ids:{}, score:{:.3f}'.format(
                '(%.1f,%.1f,%.1f,%.1f)' % (box[0], box[1], box[2], box[3]),
                COCO_CATEGORY[int(obj_cls)], score)
            for box, obj_cls, score in zip(boxes, cls_inds, scores)
        ]))
    except:
        # FIXME: do not use bare 'except'
        pass

    # show image
    detect_object = convert_to_ailia_detector_object(boxes, scores, cls_inds,
                                                     img.shape[1],
                                                     img.shape[0])
    img = plot_results(detect_object, img, COCO_CATEGORY)

    savepath = get_savepath(args.savepath, filename)
    logger.info(f'saved at : {savepath}')
    cv2.imwrite(savepath, img)

    if args.profile:
        print(detector.get_summary())

    logger.info('Script finished successfully.')
Example #5
0
def recognize_from_video():
    # net initialize
    detector = ailia.Detector(
        MODEL_PATH,
        WEIGHT_PATH,
        len(COCO_CATEGORY),
        format=ailia.NETWORK_IMAGE_FORMAT_RGB,
        channel=ailia.NETWORK_IMAGE_CHANNEL_FIRST,
        range=ailia.NETWORK_IMAGE_RANGE_U_FP32,
        algorithm=ailia.DETECTOR_ALGORITHM_YOLOV3,
        env_id=args.env_id,
    )
    if args.detection_width != DETECTION_SIZE or args.detection_height != DETECTION_SIZE:
        detector.set_input_shape(args.detection_width, args.detection_height)

    capture = webcamera_utils.get_capture(args.video)

    # create video writer if savepath is specified as video format
    if args.savepath != SAVE_IMAGE_PATH:
        f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        writer = webcamera_utils.get_writer(args.savepath, f_h, f_w)
    else:
        writer = None

    while (True):
        ret, frame = capture.read()
        if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
            break

        img = cv2.cvtColor(frame, cv2.COLOR_BGR2BGRA)
        detector.compute(img, args.threshold, args.iou)
        res_img = plot_results(detector, frame, COCO_CATEGORY, False)
        cv2.imshow('frame', res_img)

        # save results
        if writer is not None:
            writer.write(res_img)

    capture.release()
    cv2.destroyAllWindows()
    if writer is not None:
        writer.release()
    logger.info('Script finished successfully.')
Example #6
0
def recognize_from_video(detector):
    capture = webcamera_utils.get_capture(args.video)

    # create video writer if savepath is specified as video format
    if args.savepath != SAVE_IMAGE_PATH:
        f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        save_h, save_w = f_h, f_w
        writer = webcamera_utils.get_writer(args.savepath, save_h, save_w)
    else:
        writer = None

    if args.write_prediction:
        frame_count = 0
        frame_digit = int(math.log10(capture.get(cv2.CAP_PROP_FRAME_COUNT)) + 1)
        video_name = os.path.splitext(os.path.basename(args.video))[0]

    while (True):
        ret, frame = capture.read()
        if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
            break

        raw_img = frame
        detector.compute(raw_img, args.threshold, args.iou)
        res_img = plot_results(detector, raw_img, COCO_CATEGORY)
        detect_object = detector
        cv2.imshow('frame', res_img)

        # save results
        if writer is not None:
            writer.write(res_img)

        # write prediction
        if args.write_prediction:
            savepath = get_savepath(args.savepath, video_name, post_fix = '_%s' % (str(frame_count).zfill(frame_digit) + '_res'), ext='.png')
            pred_file = '%s.txt' % savepath.rsplit('.', 1)[0]
            write_predictions(pred_file, detect_object, frame, COCO_CATEGORY)
            frame_count += 1

    capture.release()
    cv2.destroyAllWindows()
    if writer is not None:
        writer.release()
    logger.info('Script finished successfully.')
Example #7
0
def recognize_from_video():
    # net initialize
    env_id = ailia.get_gpu_environment_id()
    print(f'env_id: {env_id}')
    detector = ailia.Detector(
        MODEL_PATH,
        WEIGHT_PATH,
        len(COCO_CATEGORY),
        format=ailia.NETWORK_IMAGE_FORMAT_RGB,
        channel=ailia.NETWORK_IMAGE_CHANNEL_FIRST,
        range=ailia.NETWORK_IMAGE_RANGE_S_FP32,
        algorithm=ailia.DETECTOR_ALGORITHM_YOLOV2,
        env_id=env_id
    )
    detector.set_anchors(ANCHORS)

    if args.video == '0':
        print('[INFO] Webcam mode is activated')
        capture = cv2.VideoCapture(0)
        if not capture.isOpened():
            print("[ERROR] webcamera not found")
            sys.exit(1)
    else:
        if check_file_existance(args.video):
            capture = cv2.VideoCapture(args.video)

    while(True):
        ret, frame = capture.read()
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
        if not ret:
            continue

        _, resized_img = adjust_frame_size(frame, IMAGE_HEIGHT, IMAGE_WIDTH)

        img = cv2.cvtColor(resized_img, cv2.COLOR_RGB2BGRA)
        detector.compute(img, THRESHOLD, IOU)
        res_img = plot_results(detector, resized_img, COCO_CATEGORY, False)
        cv2.imshow('frame', res_img)

    capture.release()
    cv2.destroyAllWindows()
    print('Script finished successfully.')
Example #8
0
def recognize_from_video():
    # net initialize
    detector = None
    env_id = ailia.get_gpu_environment_id()
    print(f'env_id: {env_id}')
    detector = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=env_id)
    if int(args.detection_width) != DETECTION_WIDTH:
        detector.set_input_shape(
            (1, 3, int(args.detection_width), int(args.detection_width)))

    if args.video == '0':
        print('[INFO] Webcam mode is activated')
        capture = cv2.VideoCapture(0)
        if not capture.isOpened():
            print("[ERROR] webcamera not found")
            sys.exit(1)
    else:
        if check_file_existance(args.video):
            capture = cv2.VideoCapture(args.video)

    while (True):
        ret, frame = capture.read()
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
        if not ret:
            continue

        img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        img = cv2.resize(img, (IMAGE_WIDTH, IMAGE_HEIGHT))
        img = np.transpose(img, [2, 0, 1])
        img = img.astype(np.float32) / 255
        img = np.expand_dims(img, 0)

        output = detector.predict([img])
        detect_object = yolov4_utils.post_processing(img, THRESHOLD, IOU,
                                                     output)
        res_img = plot_results(detect_object[0], frame, COCO_CATEGORY)

        cv2.imshow('frame', res_img)

    capture.release()
    cv2.destroyAllWindows()
    print('Script finished successfully.')
Example #9
0
def recognize_from_video(video, net):
    capture = get_capture(video)

    while True:
        ret, frame = capture.read()
        if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
            break

        pred = predict(frame, net)

        # plot result
        detect_object = convert_to_ailia_detector_object(
            pred, frame.shape[1], frame.shape[0])
        img = plot_results(detect_object, frame, obj_list)

        cv2.imshow('frame', img)

    capture.release()
    logger.info('Script finished successfully.')
Example #10
0
def recognize_from_image():
    # prepare input data
    img = load_image(args.input)
    print(f'input image shape: {img.shape}')

    # net initialize
    env_id = ailia.get_gpu_environment_id()
    print(f'env_id: {env_id}')
    detector = ailia.Detector(
        MODEL_PATH,
        WEIGHT_PATH,
        len(FACE_CATEGORY),
        format=ailia.NETWORK_IMAGE_FORMAT_RGB,
        channel=ailia.NETWORK_IMAGE_CHANNEL_FIRST,
        range=RANGE,
        algorithm=ALGORITHM,
        env_id=env_id
    )

    # inference
    print('Start inference...')
    if args.benchmark:
        print('BENCHMARK mode')
        for i in range(5):
            start = int(round(time.time() * 1000))
            detector.compute(img, THRESHOLD, IOU)
            end = int(round(time.time() * 1000))
            print(f'\tailia processing time {end - start} ms')
    else:
        detector.compute(img, THRESHOLD, IOU)

    # nms
    detections = []
    for idx in range(detector.get_object_count()):
        obj = detector.get_object(idx)
        detections.append(obj)
    detections=nms_between_categories(detections,img.shape[1],img.shape[0],categories=[0,1],iou_threshold=IOU)

    # plot result
    res_img = plot_results(detections, img, FACE_CATEGORY)
    cv2.imwrite(args.savepath, res_img)
    print('Script finished successfully.')
Example #11
0
def recognize_from_video():
    # net initialize
    env_id = args.env_id
    net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=env_id)
    detector = NanoDetDetection(net,
                                input_shape=[HEIGHT, WIDTH],
                                reg_max=REG_MAX)

    capture = webcamera_utils.get_capture(args.video)

    # create video writer if savepath is specified as video format
    if args.savepath != SAVE_IMAGE_PATH:
        logger.warning(
            'currently, video results cannot be output correctly...')
        f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        save_h, save_w = f_h, f_w
        writer = webcamera_utils.get_writer(args.savepath, save_h, save_w)
    else:
        writer = None

    while (True):
        ret, frame = capture.read()
        if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
            break

        raw_img = frame
        detect_object = detector.detect(raw_img)
        detect_object = reverse_letterbox(detect_object, raw_img,
                                          (raw_img.shape[0], raw_img.shape[1]))
        res_img = plot_results(detect_object, raw_img, COCO_CATEGORY)
        cv2.imshow('frame', res_img)

        # save results
        if writer is not None:
            writer.write(res_img)

    capture.release()
    cv2.destroyAllWindows()
    if writer is not None:
        writer.release()
    logger.info('Script finished successfully.')
Example #12
0
def recognize_from_image(detector):
    # input image loop
    for image_path in args.input:
        # prepare input data
        logger.debug(f'input image: {image_path}')
        raw_img = cv2.imread(image_path, cv2.IMREAD_COLOR)
        logger.debug(f'input image shape: {raw_img.shape}')

        def compute():
            detector.compute(raw_img, args.threshold, args.iou)
            return None

        # inference
        logger.info('Start inference...')
        if args.benchmark:
            logger.info('BENCHMARK mode')
            total_time = 0
            for i in range(args.benchmark_count):
                start = int(round(time.time() * 1000))
                output = compute()
                end = int(round(time.time() * 1000))
                if i != 0:
                    total_time = total_time + (end - start)
                logger.info(f'\tailia processing time {end - start} ms')
            logger.info(f'\taverage time {total_time / (args.benchmark_count-1)} ms')
        else:
            output = compute()

        res_img = plot_results(detector, raw_img, COCO_CATEGORY)
        detect_object = detector

        # plot result
        savepath = get_savepath(args.savepath, image_path)
        logger.info(f'saved at : {savepath}')
        cv2.imwrite(savepath, res_img)

        # write prediction
        if args.write_prediction:
            pred_file = '%s.txt' % savepath.rsplit('.', 1)[0]
            write_predictions(pred_file, detect_object, raw_img, COCO_CATEGORY)

    logger.info('Script finished successfully.')
Example #13
0
def recognize_from_image():
    # net initialize
    detector = ailia.Detector(
        MODEL_PATH,
        WEIGHT_PATH,
        len(COCO_CATEGORY),
        format=ailia.NETWORK_IMAGE_FORMAT_RGB,
        channel=ailia.NETWORK_IMAGE_CHANNEL_FIRST,
        range=ailia.NETWORK_IMAGE_RANGE_U_FP32,
        algorithm=ailia.DETECTOR_ALGORITHM_YOLOV3,
        env_id=args.env_id,
    )
    if args.detection_width != DETECTION_SIZE or args.detection_height != DETECTION_SIZE:
        detector.set_input_shape(args.detection_width, args.detection_height)

    # input image loop
    for image_path in args.input:
        # prepare input data
        logger.info(image_path)

        # prepare input data
        img = load_image(image_path)
        logger.info(f'input image shape: {img.shape}')

        # inference
        logger.info('Start inference...')
        if args.benchmark:
            logger.info('BENCHMARK mode')
            for i in range(5):
                start = int(round(time.time() * 1000))
                detector.compute(img, args.threshold, args.iou)
                end = int(round(time.time() * 1000))
                logger.info(f'\tailia processing time {end - start} ms')
        else:
            detector.compute(img, args.threshold, args.iou)

        # plot result
        res_img = plot_results(detector, img, COCO_CATEGORY)
        savepath = get_savepath(args.savepath, image_path)
        logger.info(f'saved at : {savepath}')
        cv2.imwrite(savepath, res_img)
    logger.info('Script finished successfully.')
Example #14
0
def recognize_from_video(video, detector):
    capture = get_capture(args.video)

    while True:
        ret, frame = capture.read()
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
        if not ret:
            continue

        x = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        detect_object, seg_masks = detect_objects(x, detector)
        res_img = plot_results(detect_object,
                               frame,
                               CATEGORY,
                               segm_masks=seg_masks)
        cv2.imshow('frame', res_img)

    capture.release()
    cv2.destroyAllWindows()
Example #15
0
def recognize_from_image():
    # prepare input data
    org_img = load_image(
        args.input,
        (IMAGE_HEIGHT, IMAGE_WIDTH),
        normalize_type='None',
    )
    if org_img.shape[2] == 3:
        org_img = cv2.cvtColor(org_img, cv2.COLOR_BGR2BGRA)

    # net initialize
    env_id = ailia.get_gpu_environment_id()
    print(f'env_id: {env_id}')
    categories = 80
    threshold = 0.4
    iou = 0.45
    detector = ailia.Detector(MODEL_PATH,
                              WEIGHT_PATH,
                              categories,
                              format=ailia.NETWORK_IMAGE_FORMAT_RGB,
                              channel=ailia.NETWORK_IMAGE_CHANNEL_FIRST,
                              range=ailia.NETWORK_IMAGE_RANGE_U_FP32,
                              algorithm=ailia.DETECTOR_ALGORITHM_SSD,
                              env_id=env_id)

    # inference
    print('Start inference...')
    if args.benchmark:
        print('BENCHMARK mode')
        for i in range(5):
            start = int(round(time.time() * 1000))
            detector.compute(org_img, threshold, iou)
            end = int(round(time.time() * 1000))
            print(f'\tailia processing time {end - start} ms')
    else:
        detector.compute(org_img, threshold, iou)

    # postprocessing
    res_img = plot_results(detector, org_img, VOC_CATEGORY)
    cv2.imwrite(args.savepath, res_img)
    print('Script finished successfully.')
Example #16
0
def recognize_from_video(detector):
    capture = webcamera_utils.get_capture(args.video)

    # create video writer if savepath is specified as video format
    if args.savepath != SAVE_IMAGE_PATH:
        f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        writer = webcamera_utils.get_writer(args.savepath, f_h, f_w)
    else:
        writer = None

    while (True):
        ret, frame = capture.read()
        if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
            break

        img = letterbox_convert(frame, (IMAGE_HEIGHT, IMAGE_WIDTH))

        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = np.transpose(img, [2, 0, 1])
        img = img.astype(np.float32) / 255
        img = np.expand_dims(img, 0)

        output = detector.predict([img])
        detect_object = post_processing(img, args.threshold, args.iou, output)
        detect_object = reverse_letterbox(detect_object[0], frame,
                                          (IMAGE_HEIGHT, IMAGE_WIDTH))
        res_img = plot_results(detect_object, frame, COCO_CATEGORY)

        cv2.imshow('frame', res_img)
        # save results
        if writer is not None:
            writer.write(res_img)

    capture.release()
    cv2.destroyAllWindows()
    if writer is not None:
        writer.release()
    print('Script finished successfully.')
Example #17
0
def recognize_from_image(image_path, net):
    if args.profile:
        net.set_profile_mode(True)

    # prepare input data
    img = load_image(image_path)
    logger.debug(f'input image shape: {img.shape}')

    img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)

    # inference
    logger.info('Start inference...')
    if args.benchmark:
        if not args.profile:
            net.set_profile_mode(True)
        logger.info('BENCHMARK mode')
        for i in range(5):
            start = int(round(time.time() * 1000))
            pred = predict(img, net)
            end = int(round(time.time() * 1000))
            logger.info(f'\tailia processing time {end - start} ms')
        if not args.profile:
            print(net.get_summary())
    else:
        pred = predict(img, net)

    # plot result
    detect_object = convert_to_ailia_detector_object(pred, img.shape[1],
                                                     img.shape[0])
    img = plot_results(detect_object, img, obj_list)

    savepath = get_savepath(args.savepath, image_path)
    logger.info(f'saved at : {savepath}')
    cv2.imwrite(savepath, img)

    if args.profile:
        print(net.get_summary())

    logger.info('Script finished successfully.')
Example #18
0
def recognize_from_image():
    # prepare input data
    org_img = load_image(args.input)
    print(f'input image shape: {org_img.shape}')

    img = cv2.cvtColor(org_img, cv2.COLOR_BGRA2RGB)
    img = cv2.resize(img, (IMAGE_WIDTH, IMAGE_HEIGHT))
    img = np.transpose(img, [2, 0, 1])
    img = img.astype(np.float32) / 255
    img = np.expand_dims(img, 0)

    # net initialize
    env_id = ailia.get_gpu_environment_id()
    print(f'env_id: {env_id}')
    detector = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=env_id)
    if int(args.detection_width) != DETECTION_WIDTH:
        detector.set_input_shape(
            (1, 3, int(args.detection_width), int(args.detection_width)))

    # inferece
    print('Start inference...')
    if args.benchmark:
        print('BENCHMARK mode')
        for i in range(5):
            start = int(round(time.time() * 1000))
            output = detector.predict([img])
            end = int(round(time.time() * 1000))
            print(f'\tailia processing time {end - start} ms')
    else:
        output = detector.predict([img])
    detect_object = yolov4_utils.post_processing(img, THRESHOLD, IOU, output)

    # plot result
    res_img = plot_results(detect_object[0], org_img, COCO_CATEGORY)

    # plot result
    cv2.imwrite(args.savepath, res_img)
    print('Script finished successfully.')
Example #19
0
def recognize_from_image(filename, detector):
    # prepare input data
    img = load_image(filename)
    print(f'input image shape: {img.shape}')

    x = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)

    # inferece
    print('Start inference...')
    if args.benchmark:
        print('BENCHMARK mode')
        for i in range(5):
            start = int(round(time.time() * 1000))
            detect_object = detect_objects(x, detector)
            end = int(round(time.time() * 1000))
            print(f'\tailia processing time {end - start} ms')
    else:
        detect_object = detect_objects(x, detector)

    # plot result
    res_img = plot_results(detect_object, img, category)
    cv2.imwrite(args.savepath, res_img)
    print('Script finished successfully.')
Example #20
0
def recognize_from_image():
    # prepare input data
    img = load_image(args.input)
    print(f'input image shape: {img.shape}')

    # net initialize
    detector = ailia.Detector(
        MODEL_PATH,
        WEIGHT_PATH,
        len(COCO_CATEGORY),
        format=ailia.NETWORK_IMAGE_FORMAT_RGB,
        channel=ailia.NETWORK_IMAGE_CHANNEL_FIRST,
        range=ailia.NETWORK_IMAGE_RANGE_U_FP32,
        algorithm=ailia.DETECTOR_ALGORITHM_YOLOV3,
        env_id=args.env_id,
    )
    if int(args.detection_width) != 416:
        detector.set_input_shape(
            int(args.detection_width), int(args.detection_width)
        )

    # inference
    print('Start inference...')
    if args.benchmark:
        print('BENCHMARK mode')
        for i in range(5):
            start = int(round(time.time() * 1000))
            detector.compute(img, THRESHOLD, IOU)
            end = int(round(time.time() * 1000))
            print(f'\tailia processing time {end - start} ms')
    else:
        detector.compute(img, THRESHOLD, IOU)

    # plot result
    res_img = plot_results(detector, img, COCO_CATEGORY)
    cv2.imwrite(args.savepath, res_img)
    print('Script finished successfully.')
def recognize_from_video(video, detector):
    capture = get_capture(args.video)

    # create video writer if savepath is specified as video format
    if args.savepath != SAVE_IMAGE_PATH:
        ailia_input_w = detector.get_input_shape()[3]
        ailia_input_h = detector.get_input_shape()[2]

        f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        save_h, save_w = calc_adjust_fsize(
            f_h, f_w, ailia_input_h, ailia_input_w
        )
        # save_w * 2: we stack source frame and estimated heatmap
        writer = get_writer(args.savepath, save_h, save_w * 2)
    else:
        writer = None

    while True:
        ret, frame = capture.read()
        if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
            break

        x = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        detect_object = detect_objects(x, detector)
        res_img = plot_results(detect_object, frame, category)
        cv2.imshow('frame', res_img)

        # save results
        if writer is not None:
            writer.write(res_img)

    capture.release()
    cv2.destroyAllWindows()
    if writer is not None:
        writer.release()
    print('Script finished successfully.')
Example #22
0
def recognize_from_image():
    env_id = args.env_id
    net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=env_id)
    net.set_input_shape((1, 3, HEIGHT, WIDTH))
    detector = NanoDetDetection(net,
                                input_shape=[HEIGHT, WIDTH],
                                reg_max=REG_MAX)

    # input image loop
    for image_path in args.input:
        # prepare input data
        logger.debug(f'input image: {image_path}')
        raw_img = cv2.imread(image_path)
        logger.debug(f'input image shape: {raw_img.shape}')

        # inference
        logger.info('Start inference...')
        if args.benchmark:
            logger.info('BENCHMARK mode')
            for i in range(5):
                start = int(round(time.time() * 1000))
                detect_object = detector.detect(raw_img)
                end = int(round(time.time() * 1000))
                logger.info(f'\tailia processing time {end - start} ms')
        else:
            detect_object = detector.detect(raw_img)

        detect_object = reverse_letterbox(detect_object, raw_img,
                                          (raw_img.shape[0], raw_img.shape[1]))
        res_img = plot_results(detect_object, raw_img, COCO_CATEGORY)

        savepath = get_savepath(args.savepath, image_path)
        logger.info(f'saved at : {savepath}')
        cv2.imwrite(savepath, res_img)

    logger.info('Script finished successfully.')
Example #23
0
def recognize_from_video():
    # net initialize
    detector = ailia.Detector(
        MODEL_PATH,
        WEIGHT_PATH,
        len(COCO_CATEGORY),
        format=ailia.NETWORK_IMAGE_FORMAT_RGB,
        channel=ailia.NETWORK_IMAGE_CHANNEL_FIRST,
        range=ailia.NETWORK_IMAGE_RANGE_U_FP32,
        algorithm=ailia.DETECTOR_ALGORITHM_YOLOV3,
        env_id=args.env_id,
    )
    if args.detection_width != DETECTION_SIZE or args.detection_height != DETECTION_SIZE:
        detector.set_input_shape(args.detection_width, args.detection_height)

    capture = webcamera_utils.get_capture(args.video)

    # create video writer if savepath is specified as video format
    if args.savepath != SAVE_IMAGE_PATH:
        f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        writer = webcamera_utils.get_writer(args.savepath, f_h, f_w)
    else:
        writer = None

    if args.write_prediction:
        frame_count = 0
        frame_digit = int(
            math.log10(capture.get(cv2.CAP_PROP_FRAME_COUNT)) + 1)
        video_name = os.path.splitext(os.path.basename(args.video))[0]

    while (True):
        ret, frame = capture.read()
        if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
            break

        img = cv2.cvtColor(frame, cv2.COLOR_BGR2BGRA)
        detector.compute(img, args.threshold, args.iou)
        res_img = plot_results(detector, frame, COCO_CATEGORY, False)
        cv2.imshow('frame', res_img)

        # save results
        if writer is not None:
            writer.write(res_img)

        # write prediction
        if args.write_prediction:
            savepath = get_savepath(
                args.savepath,
                video_name,
                post_fix='_%s' %
                (str(frame_count).zfill(frame_digit) + '_res'),
                ext='.png')
            pred_file = '%s.txt' % savepath.rsplit('.', 1)[0]
            write_predictions(pred_file, detector, frame, COCO_CATEGORY)
            frame_count += 1

    capture.release()
    cv2.destroyAllWindows()
    if writer is not None:
        writer.release()
    logger.info('Script finished successfully.')
Example #24
0
def recognize_from_video():
    # net initialize
    detector = None
    detector = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)

    capture = webcamera_utils.get_capture(args.video)

    # create video writer if savepath is specified as video format
    if args.savepath != SAVE_IMAGE_PATH:
        f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        writer = webcamera_utils.get_writer(args.savepath, f_h, f_w)
    else:
        writer = None

    if args.write_prediction:
        frame_count = 0
        frame_digit = int(
            math.log10(capture.get(cv2.CAP_PROP_FRAME_COUNT)) + 1)
        video_name = os.path.splitext(os.path.basename(args.video))[0]

    while (True):
        ret, frame = capture.read()
        if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
            break

        img = letterbox_convert(frame, (IMAGE_HEIGHT, IMAGE_WIDTH))

        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = np.transpose(img, [2, 0, 1])
        img = img.astype(np.float32) / 255
        img = np.expand_dims(img, 0)

        output = detector.predict([img])
        detect_object = yolov5_utils.post_processing(img, args.threshold,
                                                     args.iou, output)
        detect_object = reverse_letterbox(detect_object[0], frame,
                                          (IMAGE_HEIGHT, IMAGE_WIDTH))

        res_img = plot_results(detect_object, frame, COCO_CATEGORY)

        cv2.imshow('frame', res_img)

        # save results
        if writer is not None:
            writer.write(res_img)

        # write prediction
        if args.write_prediction:
            savepath = get_savepath(
                args.savepath,
                video_name,
                post_fix='_%s' %
                (str(frame_count).zfill(frame_digit) + '_res'),
                ext='.png')
            pred_file = '%s.txt' % savepath.rsplit('.', 1)[0]
            write_predictions(pred_file, detect_object, frame, COCO_CATEGORY)
            frame_count += 1

    capture.release()
    cv2.destroyAllWindows()
    if writer is not None:
        writer.release()
    logger.info('Script finished successfully.')
Example #25
0
def recognize_from_image():
    # net initialize
    detector = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
    if args.profile:
        detector.set_profile_mode(True)

    # input image loop
    for image_path in args.input:
        # prepare input data
        logger.info(image_path)

        # prepare input data
        org_img = load_image(image_path)
        org_img = cv2.cvtColor(org_img, cv2.COLOR_BGRA2BGR)
        logger.info(f'input image shape: {org_img.shape}')

        img = letterbox_convert(org_img, (IMAGE_HEIGHT, IMAGE_WIDTH))

        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = np.transpose(img, [2, 0, 1])
        img = img.astype(np.float32) / 255
        img = np.expand_dims(img, 0)

        # inference
        logger.info('Start inference...')
        if args.benchmark:
            logger.info('BENCHMARK mode')
            total_time = 0
            for i in range(args.benchmark_count):
                start = int(round(time.time() * 1000))
                output = detector.predict([img])
                end = int(round(time.time() * 1000))
                if i != 0:
                    total_time = total_time + (end - start)
                logger.info(f'\tailia processing time {end - start} ms')
            logger.info(
                f'\taverage time {total_time / (args.benchmark_count-1)} ms')
        else:
            output = detector.predict([img])
        detect_object = yolov5_utils.post_processing(img, args.threshold,
                                                     args.iou, output)
        detect_object = reverse_letterbox(detect_object[0], org_img,
                                          (IMAGE_HEIGHT, IMAGE_WIDTH))

        # plot result
        res_img = plot_results(detect_object, org_img, COCO_CATEGORY)

        # plot result
        savepath = get_savepath(args.savepath, image_path)
        logger.info(f'saved at : {savepath}')
        cv2.imwrite(savepath, res_img)

        # write prediction
        if args.write_prediction:
            pred_file = '%s.txt' % savepath.rsplit('.', 1)[0]
            write_predictions(pred_file, detect_object, org_img, COCO_CATEGORY)

    if args.profile:
        print(detector.get_summary())

    logger.info('Script finished successfully.')
Example #26
0
def recognize_from_image():
    # net initialize
    if args.detector == True:
        detector = ailia.Detector(
            MODEL_PATH,
            WEIGHT_PATH,
            len(CATEGORY),
            format=ailia.NETWORK_IMAGE_FORMAT_RGB,
            channel=ailia.NETWORK_IMAGE_CHANNEL_FIRST,
            range=ailia.NETWORK_IMAGE_RANGE_S_FP32,
            algorithm=ailia.DETECTOR_ALGORITHM_YOLOV2,
            env_id=args.env_id,
        )
        detector.set_anchors(ANCHORS)
        if args.profile:
            detector.set_profile_mode(True)
    else:
        print("path", WEIGHT_PATH)
        net = ailia.Net(None, WEIGHT_PATH)

    # input image loop
    for image_path in args.input:
        # prepare input data logger.info(image_path)
        img = load_image(image_path)
        logger.debug(f'input image shape: {img.shape}')

        # inference
        logger.info('Start inference...')
        if args.benchmark:
            logger.info('BENCHMARK mode')
            for i in range(5):
                start = int(round(time.time() * 1000))
                if args.detector:
                    detector.compute(img, THRESHOLD, IOU)
                else:
                    pass
                end = int(round(time.time() * 1000))
                logger.info(f'\tailia processing time {end - start} ms')
            # plot result
            res_img = plot_results(detector, img, CATEGORY)
            savepath = get_savepath(args.savepath, image_path)
            logger.info(f'saved at : {savepath}')
            cv2.imwrite(savepath, res_img)
            if args.profile:
                print(detector.get_summary())

        else:
            if args.detector:
                detector.compute(img, THRESHOLD, IOU)
                # plot result
                res_img = plot_results(detector, img, CATEGORY)
                savepath = get_savepath(args.savepath, image_path)
                logger.info(f'saved at : {savepath}')
                cv2.imwrite(savepath, res_img)
                if args.profile:
                    print(detector.get_summary())

            else:
                savepath = get_savepath(args.savepath, image_path)

                img_PIL = Image.open(image_path).convert('RGB')
                input_data = cv2.imread(image_path)
                input_data = cv2.resize(input_data, (416, 416)) / 255
                input_data = input_data.transpose((2, 0, 1))
                input_data = input_data[np.newaxis, :, :, :].astype(np.float32)
                results = net.run([input_data])
                results = torch.FloatTensor(results[0])
                detect(img_PIL, results, savepath, video=False)

    logger.info('Script finished successfully.')
Example #27
0
def recognize_from_image(filename, detector):
    if args.profile:
        detector.set_profile_mode(True)

    # load input image
    img = load_image(filename)
    img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)

    logger.info('Start inference...')
    if args.benchmark:
        for mode in range(2):
            if mode == 0:
                logger.info('BENCHMARK mode (without post process)')
            else:
                logger.info('BENCHMARK mode (with post process)')
            zeros = np.zeros((1, 3, 512, 512))
            total_time = 0
            for i in range(args.benchmark_count):
                start = int(round(time.time() * 1000))
                if mode == 0:
                    detector.predict(zeros)
                else:
                    boxes, scores, cls_inds = detect_objects(img, detector)
                end = int(round(time.time() * 1000))
                if i != 0:
                    total_time = total_time + (end - start)
                logger.info(f'\tailia processing time {end - start} ms')
            logger.info(
                f'\taverage time {total_time / (args.benchmark_count-1)} ms')
    else:
        boxes, scores, cls_inds = detect_objects(img, detector)

    try:
        logger.info('\n'.join([
            'pos:{}, ids:{}, score:{:.3f}'.format(
                '(%.1f,%.1f,%.1f,%.1f)' % (box[0], box[1], box[2], box[3]),
                COCO_CATEGORY[int(obj_cls)], score)
            for box, obj_cls, score in zip(boxes, cls_inds, scores)
        ]))
    except:
        # FIXME: do not use base 'except'
        pass

    Detection = namedtuple('Detection',
                           ['category', 'prob', 'x', 'y', 'w', 'h'])
    ary = []
    h, w = (img.shape[0], img.shape[1])
    for i, box in enumerate(boxes):
        d = Detection(int(cls_inds[i]), scores[i], box[0] / w, box[1] / h,
                      (box[2] - box[0]) / w, (box[3] - box[1]) / h)
        ary.append(d)

    im2show = plot_results(ary, img, COCO_CATEGORY)

    savepath = get_savepath(args.savepath, filename)
    logger.info(f'saved at : {savepath}')
    cv2.imwrite(savepath, im2show)

    # write prediction
    if args.write_prediction:
        pred_file = '%s.txt' % savepath.rsplit('.', 1)[0]
        write_predictions(pred_file, ary, img, category=COCO_CATEGORY)

    if args.profile:
        print(detector.get_summary())

    logger.info('Script finished successfully.')
Example #28
0
def recognize_from_video():
    # net initialize
    env_id = args.env_id
    detector = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=env_id)
    capture = webcamera_utils.get_capture(args.video)

    # create video writer if savepath is specified as video format
    if args.savepath != SAVE_IMAGE_PATH:
        logger.warning(
            'currently, video results cannot be output correctly...')
        f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        save_h, save_w = f_h, f_w
        writer = webcamera_utils.get_writer(args.savepath, save_h, save_w)
    else:
        writer = None

    while (True):
        ret, frame = capture.read()
        if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
            break

        raw_img = frame
        img = cv2.resize(raw_img, dsize=(1280, 896))
        img = np.transpose(img, (2, 0, 1))
        img = np.expand_dims(img, 0)
        img = img / 255.0

        pred = detector.predict(img)
        pred = non_max_suppression_numpy(pred, THRESHOLD, IOU)
        for i, det in enumerate(pred):
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          raw_img.shape).round()
                img_size_h, img_size_w = raw_img.shape[:2]
                output = []
                # Write results
                for *xyxy, conf, cls in det:
                    xyxy = [int(v) for v in xyxy]
                    x1, y1, x2, y2 = xyxy
                    r = ailia.DetectorObject(
                        category=int(cls),
                        prob=conf,
                        x=x1 / img_size_w,
                        y=y1 / img_size_h,
                        w=(x2 - x1) / img_size_w,
                        h=(y2 - y1) / img_size_h,
                    )
                    output.append(r)

        detect_object = reverse_letterbox(output, raw_img,
                                          (raw_img.shape[0], raw_img.shape[1]))
        res_img = plot_results(detect_object, raw_img, COCO_CATEGORY)
        cv2.imshow('frame', res_img)

        # save results
        if writer is not None:
            writer.write(res_img)

    capture.release()
    cv2.destroyAllWindows()
    if writer is not None:
        writer.release()
    logger.info('Script finished successfully.')