def main():
    parser = argparse.ArgumentParser(
        description="PyTorch Object Detection Training")
    parser.add_argument(
        "--config-file",
        default=
        "/home/lxl/jittor/detectron.jittor/configs/maskrcnn_benchmark/e2e_faster_rcnn_R_50_C4_1x.yaml",
        metavar="FILE",
        help="path to config file",
        type=str,
    )
    parser.add_argument("--local_rank", type=int, default=0)
    parser.add_argument(
        "--skip-test",
        dest="skip_test",
        help="Do not test the final model",
        action="store_true",
    )
    parser.add_argument(
        "opts",
        help="Modify config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )

    args = parser.parse_args()

    num_gpus = int(
        os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1

    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    output_dir = cfg.OUTPUT_DIR
    if output_dir:
        mkdir(output_dir)

    logger = setup_logger("detectron", output_dir)
    logger.info("Using {} GPUs".format(num_gpus))

    logger.info("Collecting env info (might take some time)")
    logger.info("\n" + collect_env_info())

    logger.info("Loaded configuration file {}".format(args.config_file))

    model = train(cfg, args.local_rank, False)

    if not args.skip_test:
        run_test(cfg, model, False)
Example #2
0
def main():
    jt.flags.use_cuda = 1
    parent_path = os.path.abspath(__file__).split("/tools/")[0]
    parser = argparse.ArgumentParser(description="Object Detection Inference")
    parser.add_argument(
        "--config-file",
        default=
        f"{parent_path}/configs/maskrcnn_benchmark/e2e_mask_rcnn_R_50_FPN_1x.yaml",
        metavar="FILE",
        help="path to config file",
    )
    parser.add_argument(
        "--ckpt",
        help=
        "The path to the checkpoint for test, default is the latest checkpoint.",
        default=None,
    )
    parser.add_argument(
        "opts",
        help="Modify config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )

    args = parser.parse_args()

    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    save_dir = ""
    logger = setup_logger("detectron", save_dir)
    logger.info("Using {} GPUs".format(1))
    logger.info(cfg)

    logger.info("Collecting env info (might take some time)")
    logger.info("\n" + collect_env_info())

    model = build_detection_model(cfg)

    output_dir = cfg.OUTPUT_DIR
    checkpointer = DetectronCheckpointer(cfg, model, save_dir=output_dir)
    ckpt = cfg.MODEL.WEIGHT if args.ckpt is None else args.ckpt
    _ = checkpointer.load(ckpt, use_latest=args.ckpt is None)

    iou_types = ("bbox", )
    if cfg.MODEL.MASK_ON:
        iou_types = iou_types + ("segm", )
    if cfg.MODEL.KEYPOINT_ON:
        iou_types = iou_types + ("keypoints", )
    output_folders = [None] * len(cfg.DATASETS.TEST)
    dataset_names = cfg.DATASETS.TEST
    if cfg.OUTPUT_DIR:
        for idx, dataset_name in enumerate(dataset_names):
            output_folder = os.path.join(cfg.OUTPUT_DIR, "inference",
                                         dataset_name)
            mkdir(output_folder)
            output_folders[idx] = output_folder
    data_loaders_val = make_data_loader(cfg, is_train=False)
    for output_folder, dataset_name, data_loader_val in zip(
            output_folders, dataset_names, data_loaders_val):
        inference(
            model,
            data_loader_val,
            dataset_name=dataset_name,
            iou_types=iou_types,
            box_only=False if cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY,
            bbox_aug=cfg.TEST.BBOX_AUG.ENABLED,
            expected_results=cfg.TEST.EXPECTED_RESULTS,
            expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
            output_folder=output_folder,
        )
Example #3
0
def main(cfg_file):
    parser = argparse.ArgumentParser(
        description="PyTorch Object Detection Training")
    parser.add_argument(
        "--config-file",
        default=cfg_file,
        metavar="FILE",
        help="path to config file",
        type=str,
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=int(
                            os.environ['CUDA_VISIBLE_DIVICES']))  # default=0
    parser.add_argument(
        "--skip-test",
        dest="skip_test",
        help="Do not test the final model",
        action="store_true",
        default=False,  # True False
    )
    parser.add_argument(
        "opts",
        help="Modify config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )

    args = parser.parse_args()

    num_gpus = int(
        os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
    args.distributed = num_gpus > 1

    # if args.distributed:
    #     torch.cuda.set_device(args.local_rank)
    #     torch.distributed.init_process_group(
    #         backend="nccl", init_method="env://"
    #     )
    #     synchronize()

    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    output_dir = cfg.OUTPUT_DIR
    if output_dir:
        mkdir(output_dir)

    logger = setup_logger("detectron", output_dir, get_rank())
    logger.info("Using {} GPUs".format(num_gpus))
    logger.info(args)

    logger.info("Loaded configuration file {}".format(args.config_file))
    with open(args.config_file, "r") as cf:
        config_str = "\n" + cf.read()
        logger.info(config_str)
    logger.info("Running with config:\n{}".format(cfg))

    model = train(cfg, args.distributed)
    if not args.skip_test:
        run_test(cfg, model, args.distributed)
Example #4
0
def main(add_eval_flag=False):
    parser = argparse.ArgumentParser(
        description="PyTorch Object Detection Inference")
    parser.add_argument(
        "--config-file",
        default=cfg_file,
        metavar="FILE",
        help="path to config file",
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=int(os.environ['CUDA_VISIBLE_DIVICES']))
    parser.add_argument(
        "opts",
        help="Modify config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )

    args = parser.parse_args()

    num_gpus = int(
        os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
    args.distributed = num_gpus > 1

    # if args.distributed:
    #     torch.cuda.set_device(args.local_rank)
    #     torch.distributed.init_process_group(
    #         backend="nccl", init_method="env://"
    #     )
    #     synchronize()

    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    save_dir = ""
    logger = setup_logger("detectron", save_dir, get_rank())
    logger.info("Using {} GPUs".format(num_gpus))
    logger.info(cfg)

    model = build_detection_model(cfg)
    model.to(cfg.MODEL.DEVICE)

    output_dir = cfg.OUTPUT_DIR
    checkpointer = DetectronCheckpointer(cfg, model, save_dir=output_dir)
    _ = checkpointer.load(cfg.MODEL.WEIGHT)

    iou_types = ("bbox", )
    if cfg.MODEL.MASK_ON:
        iou_types = iou_types + ("segm", )

    output_folders = [None] * len(cfg.DATASETS.TEST)
    dataset_names = cfg.DATASETS.TEST
    if cfg.OUTPUT_DIR:
        for idx, dataset_name in enumerate(dataset_names):
            output_folder = os.path.join(cfg.OUTPUT_DIR, "inference",
                                         dataset_name)
            mkdir(output_folder)
            output_folders[idx] = output_folder
    data_loaders_val = make_data_loader(cfg,
                                        is_train=False,
                                        is_distributed=args.distributed)
    for output_folder, dataset_name, data_loader_val in zip(
            output_folders, dataset_names, data_loaders_val):
        coco_results, _ = \
            inference(
                model,
                data_loader_val,
                dataset_name=dataset_name,
                iou_types=iou_types,
                box_only=cfg.MODEL.RPN_ONLY,
                device=cfg.MODEL.DEVICE,
                expected_results=cfg.TEST.EXPECTED_RESULTS,
                expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
                output_folder=output_folder,
        )
    synchronize()

    def add_eval_fields():
        ar = coco_results.results['bbox']['AR50']
        ap = coco_results.results['bbox']['AP50']

        checkpoint_file = checkpointer.get_checkpoint_file()
        base_checkpoint_file = os.path.basename(checkpoint_file).split('.')[0]
        new_checkpoint_file = os.path.join(
            output_dir,
            base_checkpoint_file + '_ar{:.03}_ap_{:.03}.pth'.format(ar, ap))
        os.rename(checkpoint_file, new_checkpoint_file)

    if add_eval_flag:
        add_eval_fields()