def add_ResNet_roi_conv5_head_for_masks(model, blob_in, dim_in, spatial_scale): """Add a ResNet "conv5" / "stage5" head for predicting masks.""" model.RoIFeatureTransform( blob_in, blob_out='_[mask]_pool5', blob_rois='mask_rois', method=cfg.MRCNN.ROI_XFORM_METHOD, resolution=cfg.MRCNN.ROI_XFORM_RESOLUTION, sampling_ratio=cfg.MRCNN.ROI_XFORM_SAMPLING_RATIO, spatial_scale=spatial_scale) dilation = cfg.MRCNN.DILATION stride_init = int(cfg.MRCNN.ROI_XFORM_RESOLUTION / 7) # by default: 2 s, dim_in = ResNet.add_stage(model, '_[mask]_res5', '_[mask]_pool5', 3, dim_in, 2048, 512, dilation, stride_init=stride_init) return s, 2048
def add_ResNet_roi_conv5_head_for_keypoints( model, blob_in, dim_in, spatial_scale ): """Add a ResNet "conv5" / "stage5" head for Mask R-CNN keypoint prediction. """ model.RoIFeatureTransform( blob_in, '_[pose]_pool5', blob_rois='keypoint_rois', method=cfg.KRCNN.ROI_XFORM_METHOD, resolution=cfg.KRCNN.ROI_XFORM_RESOLUTION, sampling_ratio=cfg.KRCNN.ROI_XFORM_SAMPLING_RATIO, spatial_scale=spatial_scale ) # Using the prefix '_[pose]_' to 'res5' enables initializing the head's # parameters using pretrained 'res5' parameters if given (see # utils.net.initialize_from_weights_file) s, dim_in = ResNet.add_stage( model, '_[pose]_res5', '_[pose]_pool5', 3, dim_in, 2048, 512, cfg.KRCNN.DILATION, stride_init=int(cfg.KRCNN.ROI_XFORM_RESOLUTION / 7) ) return s, 2048
def add_ResNet_roi_conv5_head_for_keypoints( model, blob_in, dim_in, spatial_scale ): """Add a ResNet "conv5" / "stage5" head for Mask R-CNN keypoint prediction. """ model.RoIFeatureTransform( blob_in, '_[pose]_pool5', blob_rois='shape_points_rois', method=cfg.KRCNN.ROI_XFORM_METHOD, resolution=cfg.KRCNN.ROI_XFORM_RESOLUTION, sampling_ratio=cfg.KRCNN.ROI_XFORM_SAMPLING_RATIO, spatial_scale=spatial_scale ) # Using the prefix '_[pose]_' to 'res5' enables initializing the head's # parameters using pretrained 'res5' parameters if given (see # utils.net.initialize_from_weights_file) s, dim_in = ResNet.add_stage( model, '_[pose]_res5', '_[pose]_pool5', 3, dim_in, 2048, 512, cfg.KRCNN.DILATION, stride_init=int(cfg.KRCNN.ROI_XFORM_RESOLUTION / 7) ) return s, 2048
def add_ResNet_roi_conv5_head_for_masks(model, blob_in, dim_in, spatial_scale): """Add a ResNet "conv5" / "stage5" head for predicting masks.""" model.RoIFeatureTransform( blob_in, blob_out='_[mask]_pool5', blob_rois='mask_rois', method=cfg.MRCNN.ROI_XFORM_METHOD, resolution=cfg.MRCNN.ROI_XFORM_RESOLUTION, sampling_ratio=cfg.MRCNN.ROI_XFORM_SAMPLING_RATIO, spatial_scale=spatial_scale ) dilation = cfg.MRCNN.DILATION stride_init = int(cfg.MRCNN.ROI_XFORM_RESOLUTION / 7) # by default: 2 s, dim_in = ResNet.add_stage( model, '_[mask]_res5', '_[mask]_pool5', 3, dim_in, 2048, 512, dilation, stride_init=stride_init ) return s, 2048