Example #1
0
def input_target_spec(s, d, s_len, d_len, SNR, N_w, N_s, NFFT, f_s):
    '''
    Input features and target (spectrum) for polar form acoustic-domain.

	Inputs:
		s - clean speech (dtype=tf.int32).
		d - noise (dtype=tf.int32).
		s_len - clean speech length without padding (samples).
		d_len - noise length without padding (samples).
		SNR - SNR level.
		N_w - time-domain window length (samples).
		N_s - time-domain window shift (samples).
		NFFT - number of acoustic-domain DFT components.
		f_s - sampling frequency (Hz).

	Outputs:
		x_MAG - noisy speech magnitude spectrum.
		s_MAG - clean speech magnitude spectrum (target).
		L - number of time-domain frames for each sequence.
	'''
    (x, s, _) = add_noise_batch(s, d, s_len, d_len, SNR)
    L = num_frames(
        s_len,
        N_s)  # number of time-domain frames for each sequence (uppercase eta).
    x_MAG, _ = polar.analysis(x, N_w, N_s, NFFT)
    s_MAG, _ = polar.analysis(s, N_w, N_s, NFFT)
    s_MAG = tf.boolean_mask(s_MAG, tf.sequence_mask(L))
    return x_MAG, s_MAG, L
Example #2
0
def target_xi(s, d, s_len, d_len, SNR, N_w, N_s, NFFT, f_s):
    '''
    Target (a priori SNR) for polar form acoustic-domain.

	Inputs:
		s - clean speech (dtype=tf.int32).
		d - noise (dtype=tf.int32).
		s_len - clean speech length without padding (samples).
		d_len - noise length without padding (samples).
		SNR - SNR level.
		N_w - time-domain window length (samples).
		N_s - time-domain window shift (samples).
		NFFT - number of acoustic-domain DFT components.
		f_s - sampling frequency (Hz).

	Outputs:
		xi_dB - a priori SNR in dB (target).
		L - number of time-domain frames for each sequence.
	'''
    (_, s, d) = add_noise_batch(s, d, s_len, d_len, SNR)
    L = num_frames(
        s_len, N_s
    )  # number of acoustic-domain frames for each sequence (uppercase eta).
    s_MAG, _ = polar.analysis(s, N_w, N_s, NFFT)
    d_MAG, _ = polar.analysis(d, N_w, N_s, NFFT)
    s_MAG = tf.boolean_mask(s_MAG, tf.sequence_mask(L))
    d_MAG = tf.boolean_mask(d_MAG, tf.sequence_mask(L))
    xi = tf.truediv(tf.square(tf.maximum(s_MAG, 1e-12)),
                    tf.square(tf.maximum(d_MAG, 1e-12)))  # a priori SNR.
    xi_dB = tf.multiply(10.0, log10(xi))  # a priori SNR in dB.
    return xi_dB, L
Example #3
0
def input_target_xi(s, d, s_len, d_len, SNR, N_w, N_s, NFFT, f_s, mu, sigma):
    '''
    Input features and target (mapped a priori SNR) for polar form acoustic-domain.

	Inputs:
		s - clean speech (dtype=tf.int32).
		d - noise (dtype=tf.int32).
		s_len - clean speech length without padding (samples).
		d_len - noise length without padding (samples).
		SNR - SNR level.
		N_w - time-domain window length (samples).
		N_s - time-domain window shift (samples).
		NFFT - number of acoustic-domain DFT components.
		f_s - sampling frequency (Hz).
		mu - sample mean.
		sigma - sample standard deviation.
	
	Outputs:
		x_MAG - noisy speech magnitude spectrum.
		xi_mapped - mapped a priori SNR (target).
		L - number of time-domain frames for each sequence.
	'''
    (x, s, d) = add_noise_batch(s, d, s_len, d_len, SNR)
    L = num_frames(
        s_len, N_s
    )  # number of acoustic-domain frames for each sequence (uppercase eta).
    x_MAG, _ = polar.analysis(x, N_w, N_s, NFFT)
    s_MAG, _ = polar.analysis(s, N_w, N_s, NFFT)
    s_MAG = tf.boolean_mask(s_MAG, tf.sequence_mask(L))
    d_MAG, _ = polar.analysis(d, N_w, N_s, NFFT)
    d_MAG = tf.boolean_mask(d_MAG, tf.sequence_mask(L))
    xi_bar = xi.xi_bar(s_MAG, d_MAG, mu, sigma)
    return x_MAG, xi_bar, L
Example #4
0
def input_target_xi(s, d, s_len, d_len, SNR, N_w, N_s, NFFT, f_s, mu, sigma):
    '''
    Input features and target (mapped a priori SNR) for polar form acoustic-domain.

	Inputs:
		s - clean speech (dtype=tf.int32).
		d - noise (dtype=tf.int32).
		s_len - clean speech length without padding (samples).
		d_len - noise length without padding (samples).
		SNR - SNR level.
		N_w - time-domain window length (samples).
		N_s - time-domain window shift (samples).
		NFFT - number of acoustic-domain DFT components.
		f_s - sampling frequency (Hz).
		mu - sample mean.
		sigma - sample standard deviation.
	
	Outputs:
		x_MAG - noisy speech magnitude spectrum.
		xi_mapped - mapped a priori SNR (target).
		L - number of time-domain frames for each sequence.
	'''
    (x, s, d) = add_noise_batch(s, d, s_len, d_len, SNR)
    L = num_frames(
        s_len, N_s
    )  # number of acoustic-domain frames for each sequence (uppercase eta).
    x_MAG, _ = polar.analysis(x, N_w, N_s, NFFT)
    s_MAG, _ = polar.analysis(s, N_w, N_s, NFFT)
    s_MAG = tf.boolean_mask(s_MAG, tf.sequence_mask(L))
    d_MAG, _ = polar.analysis(d, N_w, N_s, NFFT)
    d_MAG = tf.boolean_mask(d_MAG, tf.sequence_mask(L))
    xi = tf.truediv(tf.square(tf.maximum(s_MAG, 1e-12)),
                    tf.square(tf.maximum(d_MAG, 1e-12)))  # a priori SNR.
    xi_dB = tf.multiply(10.0, log10(xi))  # a priori SNR in dB.
    xi_mapped = tf.multiply(
        0.5,
        tf.add(
            1.0,
            tf.erf(
                tf.truediv(tf.subtract(xi_dB, mu),
                           tf.multiply(
                               sigma, tf.sqrt(2.0))))))  # mapped a priori SNR.
    return x_MAG, xi_mapped, L
Example #5
0
def input(z, z_len, N_w, N_s, NFFT, f_s):
    '''
    Input features for polar form acoustic-domain.

	Input/s:
		z - speech (dtype=tf.int32).
		z_len - speech length without padding (samples).
		N_w - time-domain window length (samples).
		N_s - time-domain window shift (samples).
		NFFT - number of acoustic-domain DFT components.
		f_s - sampling frequency (Hz).

	Output/s:
		z_MAG - speech magnitude spectrum.
		z_PHA - speech phase spectrum.
		L - number of time-domain frames for each sequence.
	'''
    z = tf.truediv(tf.cast(z, tf.float32), 32768.0)
    L = num_frames(z_len, N_s)
    z_MAG, z_PHA = polar.analysis(z, N_w, N_s, NFFT)
    return z_MAG, L, z_PHA