def instrument(graph, **kwargs): track_subsections(graph, **kwargs) # Construct a fresh Timer object profiler = kwargs['profiler'] timer = Timer(profiler.name, list(profiler.all_sections)) instrument_sections(graph, timer=timer, **kwargs)
def test_timers(): """Pickling for Timers used in Operators for C-level profiling.""" timer = Timer('timer', ['sec0', 'sec1']) pkl_obj = pickle.dumps(timer) new_obj = pickle.loads(pkl_obj) assert new_obj.name == timer.name assert new_obj.sections == timer.sections assert new_obj.value._obj.sec0 == timer.value._obj.sec0 == 0.0 assert new_obj.value._obj.sec1 == timer.value._obj.sec1 == 0.0
def autotune(operator, args, level, mode): """ Operator autotuning. Parameters ---------- operator : Operator Input Operator. args : dict_like The runtime arguments with which `operator` is run. level : str The autotuning aggressiveness (basic, aggressive, max). A more aggressive autotuning might eventually result in higher runtime performance, but the autotuning phase will take longer. mode : str The autotuning mode (preemptive, runtime). In preemptive mode, the output runtime values supplied by the user to `operator.apply` are replaced with shadow copies. """ key = [level, mode] accepted = configuration._accepted['autotuning'] if key not in accepted: raise ValueError("The accepted `(level, mode)` combinations are `%s`; " "provided `%s` instead" % (accepted, key)) # We get passed all the arguments, but the cfunction only requires a subset at_args = OrderedDict([(p.name, args[p.name]) for p in operator.parameters]) # User-provided output data won't be altered in `preemptive` mode if mode == 'preemptive': output = {i.name: i for i in operator.output} copies = { k: output[k]._C_as_ndarray(v).copy() for k, v in args.items() if k in output } # WARNING: `copies` keeps references to numpy arrays, which is required # to avoid garbage collection to kick in during autotuning and prematurely # free the shadow copies handed over to C-land at_args.update( {k: output[k]._C_make_dataobj(v) for k, v in copies.items()}) # Disable halo exchanges through MPI_PROC_NULL if mode in ['preemptive', 'destructive']: for p in operator.parameters: if isinstance(p, MPINeighborhood): at_args.update(MPINeighborhood(p.neighborhood)._arg_values()) for i in p.fields: setattr(at_args[p.name]._obj, i, MPI.PROC_NULL) elif isinstance(p, MPIMsgEnriched): at_args.update( MPIMsgEnriched(p.name, p.target, p.halos)._arg_values()) for i in at_args[p.name]: i.fromrank = MPI.PROC_NULL i.torank = MPI.PROC_NULL roots = [operator.body] + [i.root for i in operator._func_table.values()] trees = filter_ordered(retrieve_iteration_tree(roots), key=lambda i: i.root) # Detect the time-stepping Iteration; shrink its iteration range so that # each autotuning run only takes a few iterations steppers = {i for i in flatten(trees) if i.dim.is_Time} if len(steppers) == 0: stepper = None timesteps = 1 elif len(steppers) == 1: stepper = steppers.pop() timesteps = init_time_bounds(stepper, at_args, args) if timesteps is None: return args, {} else: warning( "cannot perform autotuning unless there is one time loop; skipping" ) return args, {} # Use a fresh Timer for auto-tuning timer = Timer('timers', list(operator._profiler.all_sections)) at_args.update(timer._arg_values()) # Perform autotuning timings = {} for n, tree in enumerate(trees): blockable = [i.dim for i in tree if not is_integer(i.step)] # Tunable arguments try: tunable = [] tunable.append(generate_block_shapes(blockable, args, level)) tunable.append(generate_nthreads(operator.nthreads, args, level)) tunable = list(product(*tunable)) except ValueError: # Some arguments are compulsory, otherwise autotuning is skipped continue # Symbolic number of loop-blocking blocks per thread nblocks_per_thread = calculate_nblocks(tree, blockable) / operator.nthreads for bs, nt in tunable: # Can we safely autotune over the given time range? if not check_time_bounds(stepper, at_args, args, mode): break # Update `at_args` to use the new tunable arguments run = [(k, v) for k, v in bs + nt if k in at_args] at_args.update(dict(run)) # Drop run if not at least one block per thread if not configuration['develop-mode'] and nblocks_per_thread.subs( at_args) < 1: continue # Run the Operator operator.cfunction(*list(at_args.values())) # Record timing elapsed = timer.total timings.setdefault(nt, OrderedDict()).setdefault(n, {})[bs] = elapsed log("run <%s> took %f (s) in %d timesteps" % (','.join('%s=%s' % i for i in run), elapsed, timesteps)) # Prepare for the next autotuning run update_time_bounds(stepper, at_args, timesteps, mode) timer.reset() # The best variant is the one that for a given number of threads had the minium # turnaround time try: runs = 0 mapper = {} for k, v in timings.items(): for i in v.values(): runs += len(i) record = mapper.setdefault(k, Record()) record.add(min(i, key=i.get), min(i.values())) best = min(mapper, key=mapper.get) best = OrderedDict(best + tuple(mapper[best].args)) best.pop(None, None) log("selected <%s>" % (','.join('%s=%s' % i for i in best.items()))) except ValueError: warning("could not perform any runs") return args, {} # Update the argument list with the tuned arguments args.update(best) # In `runtime` mode, some timesteps have been executed already, so we must # adjust the time range finalize_time_bounds(stepper, at_args, args, mode) # Autotuning summary summary = {} summary['runs'] = runs summary['tpr'] = timesteps # tpr -> timesteps per run summary['tuned'] = dict(best) return args, summary