Example #1
0
flow.addSource(glycolaldehyde)
flow.addSink(glycolaldehyde)

flow.addConstraint(inFlow(formaldehyde) == 2)
flow.addConstraint(outFlow(glycolaldehyde) == 2)
flow.addConstraint(inFlow(glycolaldehyde) == 1)

flow.calc()

solution = list(flow.solutions)[0]

solution.print()

flow_graph = HyperGraph.from_flow_solution(solution)

ode = dgDynamicSim(flow_graph)
stochastic = dgDynamicSim(flow_graph, simulator_choice="stochastic")

parameters = {edge: 0.5 for edge in ode.abstract_edges}

initial_conditions = {
    'Formaldehyde': 100,
    'Glycolaldehyde': 1,
}

drain_parameters = {symbol: {
    'out': {
        'factor': 0.015
    }
} for symbol in ode.symbols}
Example #2
0
def add_natural_drain(symbols, natural_drain=0.0001):
    count = 0
    for sym in symbols:
        if sym not in drain_params or 'out' not in drain_params[sym]:
            drain_params[sym] = {'out': {'factor': natural_drain}}
            count += 1
    print("Natural out drain set to {} for {} reactions".format(
        natural_drain, count))


parameter_matrix = tuple({
    r: rate_dict
    for r, rate_dict in zip(reactions, generate_rates(reactions))
} for _ in range(runs))

ode = dgDynamicSim(dg)
stochastic = dgDynamicSim(dg, 'stochastic')
add_natural_drain(ode.symbols)

sim_end_time = 60000
period_bounds = (600, sim_end_time / 2)  # looking from 600 to 30000

dt = "{:%Y%m%d%H%M%S}".format(datetime.datetime.now())
plot_names_file = "plots_scores_{}_{}_{}_{}.txt".format(
    file_prefix, plugin_name, method_name, dt)
# shot format file that should help in sample classification

measurement_output = {
    'variance': [],
    'fourier_amp': [],
    'fourier_freq': [],
Example #3
0
    recovered_stays_recovered
)

initial_conditions = {
    'S': 400,
    'I': 2,
}

parameters = {
    susceptible_infected: 0.001,
    infected_stays_infected: 0.001,
    recovered_stays_recovered: 0.001,
    recovered: 0.03,
}

ode = dgDynamicSim(dg, simulator_choice="ODE")
stochastic = dgDynamicSim(dg, simulator_choice="stochastic")

# Name of the data set
name = "infected"
# figure_size in centimetres
figure_size = (40, 20)
end_t = 200

with stochastic("spim") as spim:
    for i in range(3):
        spim(end_t, initial_conditions, parameters,).plot(figure_size=figure_size)

with stochastic("stochkit2") as stochkit2:
    stochkit2.trajectories = 3
    stochkit2.simulate(end_t, initial_conditions, parameters,).plot(figure_size=figure_size)
Example #4
0
parameters = {
    foxes_hunts: 0.005,
    rabbit_multiples: 0.7,
}

drain_parameters = {
    'F': {
        'out': {
            'factor': 0.5
        }
    }
}
end_t = 100

ode = dgDynamicSim(dg, simulator_choice='ode')
stochastic = dgDynamicSim(dg, simulator_choice='stochastic')

# Name of the data set
name = "foxesRabbits"
figure_size = (40, 20)

scipy = ode('scipy')
matlab = ode('matlab')

# Run the simulation and give us the output and the analytic class
# which gives access to computation of the Fourier transformation etc..
# The output can be inspected and plotted like a normal output class
output, analytics = DynamicAnalysisDevice.from_simulation(scipy, end_t, initial_conditions,
                                      parameters, drain_parameters)