Example #1
0
def load_data(data_name, get_norm=False, inv_target=False):
    if data_name == 'aifb':
        dataset = AIFBDataset()
    elif data_name == 'mutag':
        dataset = MUTAGDataset()
    elif data_name == 'bgs':
        dataset = BGSDataset()
    else:
        dataset = AMDataset()

    # Load hetero-graph
    hg = dataset[0]

    num_rels = len(hg.canonical_etypes)
    category = dataset.predict_category
    num_classes = dataset.num_classes
    labels = hg.nodes[category].data.pop('labels')
    train_mask = hg.nodes[category].data.pop('train_mask')
    test_mask = hg.nodes[category].data.pop('test_mask')
    train_idx = th.nonzero(train_mask, as_tuple=False).squeeze()
    test_idx = th.nonzero(test_mask, as_tuple=False).squeeze()

    if get_norm:
        # Calculate normalization weight for each edge,
        # 1. / d, d is the degree of the destination node
        for cetype in hg.canonical_etypes:
            hg.edges[cetype].data['norm'] = dgl.norm_by_dst(
                hg, cetype).unsqueeze(1)
        edata = ['norm']
    else:
        edata = None

    # get target category id
    category_id = hg.ntypes.index(category)

    g = dgl.to_homogeneous(hg, edata=edata)
    # Rename the fields as they can be changed by for example NodeDataLoader
    g.ndata['ntype'] = g.ndata.pop(dgl.NTYPE)
    g.ndata['type_id'] = g.ndata.pop(dgl.NID)
    node_ids = th.arange(g.num_nodes())

    # find out the target node ids in g
    loc = (g.ndata['ntype'] == category_id)
    target_idx = node_ids[loc]

    if inv_target:
        # Map global node IDs to type-specific node IDs. This is required for
        # looking up type-specific labels in a minibatch
        inv_target = th.empty((g.num_nodes(), ), dtype=th.int64)
        inv_target[target_idx] = th.arange(0,
                                           target_idx.shape[0],
                                           dtype=inv_target.dtype)
        return g, num_rels, num_classes, labels, train_idx, test_idx, target_idx, inv_target
    else:
        return g, num_rels, num_classes, labels, train_idx, test_idx, target_idx
Example #2
0
    def load_RDF_dgl(self, dataset):
        # load graph data
        if dataset == 'aifb':
            kg_dataset = AIFBDataset()
        elif dataset == 'mutag':
            kg_dataset = MUTAGDataset()
        elif dataset == 'bgs':
            kg_dataset = BGSDataset()
        elif dataset == 'am':
            kg_dataset = AMDataset()
        else:
            raise ValueError()

        # Load from hetero-graph
        kg = kg_dataset[0]
        category = kg_dataset.predict_category
        num_classes = kg_dataset.num_classes
        return kg, category, num_classes
Example #3
0
def load_KG(dataset):
    from dgl.data.rdf import AIFBDataset, MUTAGDataset, BGSDataset, AMDataset
    # load graph data
    if dataset == 'aifb':
        kg_dataset = AIFBDataset()
    elif dataset == 'mutag':
        kg_dataset = MUTAGDataset()
    elif dataset == 'bgs':
        kg_dataset = BGSDataset()
    elif dataset == 'am':
        kg_dataset = AMDataset()
    else:
        raise ValueError()

    # Load from hetero-graph
    kg = kg_dataset[0]
    category = kg_dataset.predict_category
    num_classes = kg_dataset.num_classes
    return kg, category, num_classes
Example #4
0
def main(args):
    # load graph data
    if args.dataset == 'aifb':
        dataset = AIFBDataset()
    elif args.dataset == 'mutag':
        dataset = MUTAGDataset()
    elif args.dataset == 'bgs':
        dataset = BGSDataset()
    elif args.dataset == 'am':
        dataset = AMDataset()
    else:
        raise ValueError()

    # Load from hetero-graph
    hg = dataset[0]

    num_rels = len(hg.canonical_etypes)
    num_of_ntype = len(hg.ntypes)
    category = dataset.predict_category
    num_classes = dataset.num_classes
    train_mask = hg.nodes[category].data.pop('train_mask')
    test_mask = hg.nodes[category].data.pop('test_mask')
    train_idx = mx.nd.array(np.nonzero(train_mask.asnumpy())[0], dtype='int64')
    test_idx = mx.nd.array(np.nonzero(test_mask.asnumpy())[0], dtype='int64')
    labels = mx.nd.array(hg.nodes[category].data.pop('labels'), dtype='int64')

    # split dataset into train, validate, test
    if args.validation:
        val_idx = train_idx[:len(train_idx) // 5]
        train_idx = train_idx[len(train_idx) // 5:]
    else:
        val_idx = train_idx

    # calculate norm for each edge type and store in edge
    for canonical_etype in hg.canonical_etypes:
        u, v, eid = hg.all_edges(form='all', etype=canonical_etype)
        v = v.asnumpy()
        _, inverse_index, count = np.unique(v,
                                            return_inverse=True,
                                            return_counts=True)
        degrees = count[inverse_index]
        norm = np.ones(eid.shape[0]) / degrees
        hg.edges[canonical_etype].data['norm'] = mx.nd.expand_dims(
            mx.nd.array(norm), axis=1)

    # get target category id
    category_id = len(hg.ntypes)
    for i, ntype in enumerate(hg.ntypes):
        if ntype == category:
            category_id = i

    g = dgl.to_homo(hg)
    num_nodes = g.number_of_nodes()
    node_ids = mx.nd.arange(num_nodes)
    edge_norm = g.edata['norm']
    edge_type = g.edata[dgl.ETYPE]

    # find out the target node ids in g
    node_tids = g.ndata[dgl.NTYPE]
    loc = (node_tids == category_id)
    loc = mx.nd.array(np.nonzero(loc.asnumpy())[0], dtype='int64')
    target_idx = node_ids[loc]

    # since the nodes are featureless, the input feature is then the node id.
    feats = mx.nd.arange(num_nodes, dtype='int32')

    # check cuda
    use_cuda = args.gpu >= 0
    if use_cuda:
        ctx = mx.gpu(args.gpu)
        feats = feats.as_in_context(ctx)
        edge_type = edge_type.as_in_context(ctx)
        edge_norm = edge_norm.as_in_context(ctx)
        labels = labels.as_in_context(ctx)
        train_idx = train_idx.as_in_context(ctx)
        g = g.to(ctx)
    else:
        ctx = mx.cpu(0)

    # create model
    model = EntityClassify(num_nodes,
                           args.n_hidden,
                           num_classes,
                           num_rels,
                           num_bases=args.n_bases,
                           num_hidden_layers=args.n_layers - 2,
                           dropout=args.dropout,
                           use_self_loop=args.use_self_loop,
                           gpu_id=args.gpu)
    model.initialize(ctx=ctx)

    # optimizer
    trainer = gluon.Trainer(model.collect_params(), 'adam', {
        'learning_rate': args.lr,
        'wd': args.l2norm
    })
    loss_fcn = gluon.loss.SoftmaxCELoss(from_logits=False)

    # training loop
    print("start training...")
    forward_time = []
    backward_time = []
    for epoch in range(args.n_epochs):
        t0 = time.time()
        with mx.autograd.record():
            pred = model(g, feats, edge_type, edge_norm)
            pred = pred[target_idx]
            loss = loss_fcn(pred[train_idx], labels[train_idx])
        t1 = time.time()
        loss.backward()
        trainer.step(len(train_idx))
        t2 = time.time()

        forward_time.append(t1 - t0)
        backward_time.append(t2 - t1)
        print(
            "Epoch {:05d} | Train Forward Time(s) {:.4f} | Backward Time(s) {:.4f}"
            .format(epoch, forward_time[-1], backward_time[-1]))

        train_acc = F.sum(
            mx.nd.cast(pred[train_idx].argmax(axis=1), 'int64') ==
            labels[train_idx]).asscalar() / train_idx.shape[0]
        val_acc = F.sum(
            mx.nd.cast(pred[val_idx].argmax(
                axis=1), 'int64') == labels[val_idx]).asscalar() / len(val_idx)
        print("Train Accuracy: {:.4f} | Validation Accuracy: {:.4f}".format(
            train_acc, val_acc))
    print()

    logits = model.forward(g, feats, edge_type, edge_norm)
    logits = logits[target_idx]
    test_acc = F.sum(
        mx.nd.cast(logits[test_idx].argmax(
            axis=1), 'int64') == labels[test_idx]).asscalar() / len(test_idx)
    print("Test Accuracy: {:.4f}".format(test_acc))
    print()

    print("Mean forward time: {:4f}".format(
        np.mean(forward_time[len(forward_time) // 4:])))
    print("Mean backward time: {:4f}".format(
        np.mean(backward_time[len(backward_time) // 4:])))
Example #5
0
def main(args):
    # check cuda
    device = 'cpu'
    use_cuda = args.gpu >= 0 and th.cuda.is_available()
    if use_cuda:
        th.cuda.set_device(args.gpu)
        device = 'cuda:%d' % args.gpu

    # load graph data
    if args.dataset == 'aifb':
        dataset = AIFBDataset()
    elif args.dataset == 'mutag':
        dataset = MUTAGDataset()
    elif args.dataset == 'bgs':
        dataset = BGSDataset()
    elif args.dataset == 'am':
        dataset = AMDataset()
    else:
        raise ValueError()

    g = dataset[0]
    category = dataset.predict_category
    num_classes = dataset.num_classes
    train_mask = g.nodes[category].data.pop('train_mask')
    test_mask = g.nodes[category].data.pop('test_mask')
    train_idx = th.nonzero(train_mask, as_tuple=False).squeeze()
    test_idx = th.nonzero(test_mask, as_tuple=False).squeeze()
    labels = g.nodes[category].data.pop('labels')

    # split dataset into train, validate, test
    if args.validation:
        val_idx = train_idx[:len(train_idx) // 5]
        train_idx = train_idx[len(train_idx) // 5:]
    else:
        val_idx = train_idx

    # create embeddings
    embed_layer = RelGraphEmbed(g, args.n_hidden)

    if not args.data_cpu:
        labels = labels.to(device)
        embed_layer = embed_layer.to(device)

    node_embed = embed_layer()
    # create model
    model = EntityClassify(g,
                           args.n_hidden,
                           num_classes,
                           num_bases=args.n_bases,
                           num_hidden_layers=args.n_layers - 2,
                           dropout=args.dropout,
                           use_self_loop=args.use_self_loop)

    if use_cuda:
        model.cuda()

    # train sampler
    sampler = dgl.dataloading.MultiLayerNeighborSampler([args.fanout] *
                                                        args.n_layers)
    loader = dgl.dataloading.DataLoader(g, {category: train_idx},
                                        sampler,
                                        batch_size=args.batch_size,
                                        shuffle=True,
                                        num_workers=0)

    # validation sampler
    # we do not use full neighbor to save computation resources
    val_sampler = dgl.dataloading.MultiLayerNeighborSampler([args.fanout] *
                                                            args.n_layers)
    val_loader = dgl.dataloading.DataLoader(g, {category: val_idx},
                                            val_sampler,
                                            batch_size=args.batch_size,
                                            shuffle=True,
                                            num_workers=0)

    # optimizer
    all_params = itertools.chain(model.parameters(), embed_layer.parameters())
    optimizer = th.optim.Adam(all_params, lr=args.lr, weight_decay=args.l2norm)

    # training loop
    print("start training...")
    dur = []
    for epoch in range(args.n_epochs):
        model.train()
        optimizer.zero_grad()
        if epoch > 3:
            t0 = time.time()

        for i, (input_nodes, seeds, blocks) in enumerate(loader):
            blocks = [blk.to(device) for blk in blocks]
            seeds = seeds[
                category]  # we only predict the nodes with type "category"
            batch_tic = time.time()
            emb = extract_embed(node_embed, input_nodes)
            lbl = labels[seeds]
            if use_cuda:
                emb = {k: e.cuda() for k, e in emb.items()}
                lbl = lbl.cuda()
            logits = model(emb, blocks)[category]
            loss = F.cross_entropy(logits, lbl)
            loss.backward()
            optimizer.step()

            train_acc = th.sum(logits.argmax(dim=1) == lbl).item() / len(seeds)
            print(
                "Epoch {:05d} | Batch {:03d} | Train Acc: {:.4f} | Train Loss: {:.4f} | Time: {:.4f}"
                .format(epoch, i, train_acc, loss.item(),
                        time.time() - batch_tic))

        if epoch > 3:
            dur.append(time.time() - t0)

        val_loss, val_acc = evaluate(model, val_loader, node_embed, labels,
                                     category, device)
        print(
            "Epoch {:05d} | Valid Acc: {:.4f} | Valid loss: {:.4f} | Time: {:.4f}"
            .format(epoch, val_acc, val_loss, np.average(dur)))
    print()
    if args.model_path is not None:
        th.save(model.state_dict(), args.model_path)

    output = model.inference(g, args.batch_size, 'cuda' if use_cuda else 'cpu',
                             0, node_embed)
    test_pred = output[category][test_idx]
    test_labels = labels[test_idx].to(test_pred.device)
    test_acc = (test_pred.argmax(1) == test_labels).float().mean()
    print("Test Acc: {:.4f}".format(test_acc))
    print()
    args = argparser.parse_args()

    if args.gpu >= 0:
        device = th.device('cuda:%d' % args.gpu)
    else:
        device = th.device('cpu')

    # load graph data
    if args.dataset == 'aifb':
        dataset = AIFBDataset()
    elif args.dataset == 'mutag':
        dataset = MUTAGDataset()
    elif args.dataset == 'bgs':
        dataset = BGSDataset()
    elif args.dataset == 'am':
        dataset = AMDataset()
    else:
        raise ValueError()

    g = dataset[0]
    category = dataset.predict_category
    num_classes = dataset.num_classes
    test_mask = g.nodes[category].data.pop('test_mask')
    test_idx = th.nonzero(test_mask, as_tuple=False).squeeze()
    train_mask = g.nodes[category].data.pop('train_mask')
    train_idx = th.nonzero(train_mask, as_tuple=False).squeeze()
    labels = g.nodes[category].data.pop('labels')

    # for etype in g.canonical_etypes:
    #     g.edges[etype].data['weights'] = th.ones(g.num_edges(etype))
    # remove below to test multi-class case
Example #7
0
def main(args, devices):
    # load graph data
    ogb_dataset = False
    if args.dataset == 'aifb':
        dataset = AIFBDataset()
    elif args.dataset == 'mutag':
        dataset = MUTAGDataset()
    elif args.dataset == 'bgs':
        dataset = BGSDataset()
    elif args.dataset == 'am':
        dataset = AMDataset()
    elif args.dataset == 'ogbn-mag':
        dataset = DglNodePropPredDataset(name=args.dataset)
        ogb_dataset = True
    else:
        raise ValueError()

    if ogb_dataset is True:
        split_idx = dataset.get_idx_split()
        train_idx = split_idx["train"]['paper']
        val_idx = split_idx["valid"]['paper']
        test_idx = split_idx["test"]['paper']
        hg_orig, labels = dataset[0]
        subgs = {}
        for etype in hg_orig.canonical_etypes:
            u, v = hg_orig.all_edges(etype=etype)
            subgs[etype] = (u, v)
            subgs[(etype[2], 'rev-' + etype[1], etype[0])] = (v, u)
        hg = dgl.heterograph(subgs)
        hg.nodes['paper'].data['feat'] = hg_orig.nodes['paper'].data['feat']
        labels = labels['paper'].squeeze()

        num_rels = len(hg.canonical_etypes)
        num_of_ntype = len(hg.ntypes)
        num_classes = dataset.num_classes
        if args.dataset == 'ogbn-mag':
            category = 'paper'
        print('Number of relations: {}'.format(num_rels))
        print('Number of class: {}'.format(num_classes))
        print('Number of train: {}'.format(len(train_idx)))
        print('Number of valid: {}'.format(len(val_idx)))
        print('Number of test: {}'.format(len(test_idx)))

        if args.node_feats:
            node_feats = []
            for ntype in hg.ntypes:
                if len(hg.nodes[ntype].data) == 0:
                    node_feats.append(None)
                else:
                    assert len(hg.nodes[ntype].data) == 1
                    feat = hg.nodes[ntype].data.pop('feat')
                    node_feats.append(feat.share_memory_())
        else:
            node_feats = [None] * num_of_ntype
    else:
        # Load from hetero-graph
        hg = dataset[0]

        num_rels = len(hg.canonical_etypes)
        num_of_ntype = len(hg.ntypes)
        category = dataset.predict_category
        num_classes = dataset.num_classes
        train_mask = hg.nodes[category].data.pop('train_mask')
        test_mask = hg.nodes[category].data.pop('test_mask')
        labels = hg.nodes[category].data.pop('labels')
        train_idx = th.nonzero(train_mask).squeeze()
        test_idx = th.nonzero(test_mask).squeeze()
        node_feats = [None] * num_of_ntype

        # AIFB, MUTAG, BGS and AM datasets do not provide validation set split.
        # Split train set into train and validation if args.validation is set
        # otherwise use train set as the validation set.
        if args.validation:
            val_idx = train_idx[:len(train_idx) // 5]
            train_idx = train_idx[len(train_idx) // 5:]
        else:
            val_idx = train_idx

    # calculate norm for each edge type and store in edge
    if args.global_norm is False:
        for canonical_etype in hg.canonical_etypes:
            u, v, eid = hg.all_edges(form='all', etype=canonical_etype)
            _, inverse_index, count = th.unique(v,
                                                return_inverse=True,
                                                return_counts=True)
            degrees = count[inverse_index]
            norm = th.ones(eid.shape[0]) / degrees
            norm = norm.unsqueeze(1)
            hg.edges[canonical_etype].data['norm'] = norm

    # get target category id
    category_id = len(hg.ntypes)
    for i, ntype in enumerate(hg.ntypes):
        if ntype == category:
            category_id = i

    g = dgl.to_homogeneous(hg, edata=['norm'])
    if args.global_norm:
        u, v, eid = g.all_edges(form='all')
        _, inverse_index, count = th.unique(v,
                                            return_inverse=True,
                                            return_counts=True)
        degrees = count[inverse_index]
        norm = th.ones(eid.shape[0]) / degrees
        norm = norm.unsqueeze(1)
        g.edata['norm'] = norm

    g.ndata[dgl.NTYPE].share_memory_()
    g.edata[dgl.ETYPE].share_memory_()
    g.edata['norm'].share_memory_()
    node_ids = th.arange(g.number_of_nodes())

    # find out the target node ids
    node_tids = g.ndata[dgl.NTYPE]
    loc = (node_tids == category_id)
    target_idx = node_ids[loc]
    target_idx.share_memory_()
    train_idx.share_memory_()
    val_idx.share_memory_()
    test_idx.share_memory_()

    n_gpus = len(devices)
    # cpu
    if devices[0] == -1:
        run(0, 0, args, ['cpu'],
            (g, node_feats, num_of_ntype, num_classes, num_rels, target_idx,
             train_idx, val_idx, test_idx, labels), None, None)
    # gpu
    elif n_gpus == 1:
        run(0, n_gpus, args, devices,
            (g, node_feats, num_of_ntype, num_classes, num_rels, target_idx,
             train_idx, val_idx, test_idx, labels), None, None)
    # multi gpu
    else:
        queue = mp.Queue(n_gpus)
        procs = []
        num_train_seeds = train_idx.shape[0]
        num_valid_seeds = val_idx.shape[0]
        num_test_seeds = test_idx.shape[0]
        train_seeds = th.randperm(num_train_seeds)
        valid_seeds = th.randperm(num_valid_seeds)
        test_seeds = th.randperm(num_test_seeds)
        tseeds_per_proc = num_train_seeds // n_gpus
        vseeds_per_proc = num_valid_seeds // n_gpus
        tstseeds_per_proc = num_test_seeds // n_gpus
        for proc_id in range(n_gpus):
            # we have multi-gpu for training, evaluation and testing
            # so split trian set, valid set and test set into num-of-gpu parts.
            proc_train_seeds = train_seeds[proc_id * tseeds_per_proc :
                                           (proc_id + 1) * tseeds_per_proc \
                                           if (proc_id + 1) * tseeds_per_proc < num_train_seeds \
                                           else num_train_seeds]
            proc_valid_seeds = valid_seeds[proc_id * vseeds_per_proc :
                                           (proc_id + 1) * vseeds_per_proc \
                                           if (proc_id + 1) * vseeds_per_proc < num_valid_seeds \
                                           else num_valid_seeds]
            proc_test_seeds = test_seeds[proc_id * tstseeds_per_proc :
                                         (proc_id + 1) * tstseeds_per_proc \
                                         if (proc_id + 1) * tstseeds_per_proc < num_test_seeds \
                                         else num_test_seeds]
            p = mp.Process(target=run,
                           args=(proc_id, n_gpus, args, devices,
                                 (g, node_feats, num_of_ntype, num_classes,
                                  num_rels, target_idx, train_idx, val_idx,
                                  test_idx, labels), (proc_train_seeds,
                                                      proc_valid_seeds,
                                                      proc_test_seeds), queue))
            p.start()
            procs.append(p)
        for p in procs:
            p.join()
Example #8
0
def main(args, devices):
    # load graph data
    ogb_dataset = False
    if args.dataset == 'aifb':
        dataset = AIFBDataset()
    elif args.dataset == 'mutag':
        dataset = MUTAGDataset()
    elif args.dataset == 'bgs':
        dataset = BGSDataset()
    elif args.dataset == 'am':
        dataset = AMDataset()
    else:
        raise ValueError()

    # Load from hetero-graph
    hg = dataset[0]

    num_rels = len(hg.canonical_etypes)
    num_of_ntype = len(hg.ntypes)
    category = dataset.predict_category
    num_classes = dataset.num_classes
    train_mask = hg.nodes[category].data.pop('train_mask')
    test_mask = hg.nodes[category].data.pop('test_mask')
    labels = hg.nodes[category].data.pop('labels')
    train_idx = th.nonzero(train_mask).squeeze()
    test_idx = th.nonzero(test_mask).squeeze()

    # split dataset into train, validate, test
    if args.validation:
        val_idx = train_idx[:len(train_idx) // 5]
        train_idx = train_idx[len(train_idx) // 5:]
    else:
        val_idx = train_idx

    # calculate norm for each edge type and store in edge
    for canonical_etype in hg.canonical_etypes:
        u, v, eid = hg.all_edges(form='all', etype=canonical_etype)
        _, inverse_index, count = th.unique(v,
                                            return_inverse=True,
                                            return_counts=True)
        degrees = count[inverse_index]
        norm = th.ones(eid.shape[0]) / degrees
        norm = norm.unsqueeze(1)
        hg.edges[canonical_etype].data['norm'] = norm

    # get target category id
    category_id = len(hg.ntypes)
    for i, ntype in enumerate(hg.ntypes):
        if ntype == category:
            category_id = i

    g = dgl.to_homo(hg)
    g.ndata[dgl.NTYPE].share_memory_()
    g.edata[dgl.ETYPE].share_memory_()
    g.edata['norm'].share_memory_()
    node_ids = th.arange(g.number_of_nodes())

    # find out the target node ids
    node_tids = g.ndata[dgl.NTYPE]
    loc = (node_tids == category_id)
    target_idx = node_ids[loc]
    target_idx.share_memory_()

    n_gpus = len(devices)
    # cpu
    if devices[0] == -1:
        run(0, 0, args, ['cpu'],
            (g, num_of_ntype, num_classes, num_rels, target_idx, train_idx,
             val_idx, test_idx, labels))
    # gpu
    elif n_gpus == 1:
        run(0, n_gpus, args, devices,
            (g, num_of_ntype, num_classes, num_rels, target_idx, train_idx,
             val_idx, test_idx, labels))
    # multi gpu
    else:
        procs = []
        num_train_seeds = train_idx.shape[0]
        tseeds_per_proc = num_train_seeds // n_gpus
        for proc_id in range(n_gpus):
            proc_train_seeds = train_idx[proc_id * tseeds_per_proc :
                                         (proc_id + 1) * tseeds_per_proc \
                                         if (proc_id + 1) * tseeds_per_proc < num_train_seeds \
                                         else num_train_seeds]
            p = mp.Process(target=run,
                           args=(proc_id, n_gpus, args, devices,
                                 (g, num_of_ntype, num_classes, num_rels,
                                  target_idx, proc_train_seeds, val_idx,
                                  test_idx, labels)))
            p.start()
            procs.append(p)
        for p in procs:
            p.join()
Example #9
0
def main(args, devices):
    # load graph data
    ogb_dataset = False
    if args.dataset == 'aifb':
        dataset = AIFBDataset()
    elif args.dataset == 'mutag':
        dataset = MUTAGDataset()
    elif args.dataset == 'bgs':
        dataset = BGSDataset()
    elif args.dataset == 'am':
        dataset = AMDataset()
    elif args.dataset == 'ogbn-mag':
        dataset = DglNodePropPredDataset(name=args.dataset)
        ogb_dataset = True
    else:
        raise ValueError()

    if ogb_dataset is True:
        split_idx = dataset.get_idx_split()
        train_idx = split_idx["train"]['paper']
        val_idx = split_idx["valid"]['paper']
        test_idx = split_idx["test"]['paper']
        hg_orig, labels = dataset[0]
        subgs = {}
        for etype in hg_orig.canonical_etypes:
            u, v = hg_orig.all_edges(etype=etype)
            subgs[etype] = (u, v)
            subgs[(etype[2], 'rev-'+etype[1], etype[0])] = (v, u)
        hg = dgl.heterograph(subgs)
        hg.nodes['paper'].data['feat'] = hg_orig.nodes['paper'].data['feat']
        labels = labels['paper'].squeeze()

        num_rels = len(hg.canonical_etypes)
        num_of_ntype = len(hg.ntypes)
        num_classes = dataset.num_classes
        if args.dataset == 'ogbn-mag':
            category = 'paper'
        print('Number of relations: {}'.format(num_rels))
        print('Number of class: {}'.format(num_classes))
        print('Number of train: {}'.format(len(train_idx)))
        print('Number of valid: {}'.format(len(val_idx)))
        print('Number of test: {}'.format(len(test_idx)))

    else:
        # Load from hetero-graph
        hg = dataset[0]

        num_rels = len(hg.canonical_etypes)
        num_of_ntype = len(hg.ntypes)
        category = dataset.predict_category
        num_classes = dataset.num_classes
        train_mask = hg.nodes[category].data.pop('train_mask')
        test_mask = hg.nodes[category].data.pop('test_mask')
        labels = hg.nodes[category].data.pop('labels')
        train_idx = th.nonzero(train_mask, as_tuple=False).squeeze()
        test_idx = th.nonzero(test_mask, as_tuple=False).squeeze()

        # AIFB, MUTAG, BGS and AM datasets do not provide validation set split.
        # Split train set into train and validation if args.validation is set
        # otherwise use train set as the validation set.
        if args.validation:
            val_idx = train_idx[:len(train_idx) // 5]
            train_idx = train_idx[len(train_idx) // 5:]
        else:
            val_idx = train_idx

    node_feats = []
    for ntype in hg.ntypes:
        if len(hg.nodes[ntype].data) == 0 or args.node_feats is False:
            node_feats.append(hg.number_of_nodes(ntype))
        else:
            assert len(hg.nodes[ntype].data) == 1
            feat = hg.nodes[ntype].data.pop('feat')
            node_feats.append(feat.share_memory_())

    # get target category id
    category_id = len(hg.ntypes)
    for i, ntype in enumerate(hg.ntypes):
        if ntype == category:
            category_id = i
        print('{}:{}'.format(i, ntype))

    g = dgl.to_homogeneous(hg)
    g.ndata['ntype'] = g.ndata[dgl.NTYPE]
    g.ndata['ntype'].share_memory_()
    g.edata['etype'] = g.edata[dgl.ETYPE]
    g.edata['etype'].share_memory_()
    g.ndata['type_id'] = g.ndata[dgl.NID]
    g.ndata['type_id'].share_memory_()
    node_ids = th.arange(g.number_of_nodes())

    # find out the target node ids
    node_tids = g.ndata[dgl.NTYPE]
    loc = (node_tids == category_id)
    target_idx = node_ids[loc]
    target_idx.share_memory_()
    train_idx.share_memory_()
    val_idx.share_memory_()
    test_idx.share_memory_()
    # Create csr/coo/csc formats before launching training processes with multi-gpu.
    # This avoids creating certain formats in each sub-process, which saves momory and CPU.
    g.create_formats_()

    n_gpus = len(devices)
    n_cpus = mp.cpu_count()
    # cpu
    if devices[0] == -1:
        run(0, 0, n_cpus, args, ['cpu'],
            (g, node_feats, num_of_ntype, num_classes, num_rels, target_idx,
             train_idx, val_idx, test_idx, labels), None, None)
    # gpu
    elif n_gpus == 1:
        run(0, n_gpus, n_cpus, args, devices,
            (g, node_feats, num_of_ntype, num_classes, num_rels, target_idx,
            train_idx, val_idx, test_idx, labels), None, None)
    # multi gpu
    else:
        queue = mp.Queue(n_gpus)
        procs = []
        num_train_seeds = train_idx.shape[0]
        num_valid_seeds = val_idx.shape[0]
        num_test_seeds = test_idx.shape[0]
        train_seeds = th.randperm(num_train_seeds)
        valid_seeds = th.randperm(num_valid_seeds)
        test_seeds = th.randperm(num_test_seeds)
        tseeds_per_proc = num_train_seeds // n_gpus
        vseeds_per_proc = num_valid_seeds // n_gpus
        tstseeds_per_proc = num_test_seeds // n_gpus
        for proc_id in range(n_gpus):
            # we have multi-gpu for training, evaluation and testing
            # so split trian set, valid set and test set into num-of-gpu parts.
            proc_train_seeds = train_seeds[proc_id * tseeds_per_proc :
                                           (proc_id + 1) * tseeds_per_proc \
                                           if (proc_id + 1) * tseeds_per_proc < num_train_seeds \
                                           else num_train_seeds]
            proc_valid_seeds = valid_seeds[proc_id * vseeds_per_proc :
                                           (proc_id + 1) * vseeds_per_proc \
                                           if (proc_id + 1) * vseeds_per_proc < num_valid_seeds \
                                           else num_valid_seeds]
            proc_test_seeds = test_seeds[proc_id * tstseeds_per_proc :
                                         (proc_id + 1) * tstseeds_per_proc \
                                         if (proc_id + 1) * tstseeds_per_proc < num_test_seeds \
                                         else num_test_seeds]
            p = mp.Process(target=run, args=(proc_id, n_gpus, n_cpus // n_gpus, args, devices,
                                             (g, node_feats, num_of_ntype, num_classes, num_rels, target_idx,
                                             train_idx, val_idx, test_idx, labels),
                                             (proc_train_seeds, proc_valid_seeds, proc_test_seeds),
                                             queue))
            p.start()
            procs.append(p)
        for p in procs:
            p.join()
Example #10
0
def main(args):
    # load graph data
    if args.dataset == 'aifb':
        dataset = AIFBDataset()
    elif args.dataset == 'mutag':
        dataset = MUTAGDataset()
    elif args.dataset == 'bgs':
        dataset = BGSDataset()
    elif args.dataset == 'am':
        dataset = AMDataset()
    else:
        raise ValueError()

    # Load from hetero-graph
    hg = dataset[0]

    num_rels = len(hg.canonical_etypes)
    category = dataset.predict_category
    num_classes = dataset.num_classes
    train_mask = hg.nodes[category].data.pop('train_mask')
    test_mask = hg.nodes[category].data.pop('test_mask')
    train_idx = torch.nonzero(train_mask).squeeze()
    test_idx = torch.nonzero(test_mask).squeeze()
    labels = hg.nodes[category].data.pop('labels')

    # split dataset into train, validate, test
    if args.validation:
        val_idx = train_idx[:len(train_idx) // 5]
        train_idx = train_idx[len(train_idx) // 5:]
    else:
        val_idx = train_idx

    # calculate norm for each edge type and store in edge
    for canonical_etype in hg.canonical_etypes:
        u, v, eid = hg.all_edges(form='all', etype=canonical_etype)
        _, inverse_index, count = torch.unique(v,
                                               return_inverse=True,
                                               return_counts=True)
        degrees = count[inverse_index]
        norm = torch.ones(eid.shape[0]).float() / degrees.float()
        norm = norm.unsqueeze(1)
        hg.edges[canonical_etype].data['norm'] = norm

    # get target category id
    category_id = len(hg.ntypes)
    for i, ntype in enumerate(hg.ntypes):
        if ntype == category:
            category_id = i

    g = dgl.to_homogeneous(hg, edata=['norm'])
    num_nodes = g.number_of_nodes()
    node_ids = torch.arange(num_nodes)
    edge_norm = g.edata['norm']
    edge_type = g.edata[dgl.ETYPE].long()

    # find out the target node ids in g
    node_tids = g.ndata[dgl.NTYPE]
    loc = (node_tids == category_id)
    target_idx = node_ids[loc]

    # since the nodes are featureless, the input feature is then the node id.
    feats = torch.arange(num_nodes)

    # check cuda
    use_cuda = args.gpu >= 0 and torch.cuda.is_available()
    if use_cuda:
        torch.cuda.set_device(args.gpu)
        feats = feats.cuda()
        edge_type = edge_type.cuda()
        edge_norm = edge_norm.cuda()
        labels = labels.cuda()

    # create model
    model = EntityClassify(num_nodes,
                           args.n_hidden,
                           num_classes,
                           num_rels,
                           num_bases=args.n_bases,
                           num_hidden_layers=args.n_layers - 2,
                           dropout=args.dropout,
                           use_self_loop=args.use_self_loop,
                           use_cuda=use_cuda)

    if use_cuda:
        model.cuda()
        g = g.to('cuda:%d' % args.gpu)

    # optimizer
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr,
                                 weight_decay=args.l2norm)

    # training loop
    print("start training...")
    forward_time = []
    backward_time = []
    model.train()
    for epoch in range(args.n_epochs):
        optimizer.zero_grad()
        t0 = time.time()
        logits = model(g, feats, edge_type, edge_norm)
        logits = logits[target_idx]
        loss = F.cross_entropy(logits[train_idx], labels[train_idx])
        t1 = time.time()
        loss.backward()
        optimizer.step()
        t2 = time.time()

        forward_time.append(t1 - t0)
        backward_time.append(t2 - t1)
        print(
            "Epoch {:05d} | Train Forward Time(s) {:.4f} | Backward Time(s) {:.4f}"
            .format(epoch, forward_time[-1], backward_time[-1]))
        train_acc = torch.sum(logits[train_idx].argmax(
            dim=1) == labels[train_idx]).item() / len(train_idx)
        val_loss = F.cross_entropy(logits[val_idx], labels[val_idx])
        val_acc = torch.sum(logits[val_idx].argmax(
            dim=1) == labels[val_idx]).item() / len(val_idx)
        print(
            "Train Accuracy: {:.4f} | Train Loss: {:.4f} | Validation Accuracy: {:.4f} | Validation loss: {:.4f}"
            .format(train_acc, loss.item(), val_acc, val_loss.item()))
    print()

    model.eval()
    logits = model.forward(g, feats, edge_type, edge_norm)
    logits = logits[target_idx]
    test_loss = F.cross_entropy(logits[test_idx], labels[test_idx])
    test_acc = torch.sum(logits[test_idx].argmax(
        dim=1) == labels[test_idx]).item() / len(test_idx)
    print("Test Accuracy: {:.4f} | Test loss: {:.4f}".format(
        test_acc, test_loss.item()))
    print()

    print("Mean forward time: {:4f}".format(
        np.mean(forward_time[len(forward_time) // 4:])))
    print("Mean backward time: {:4f}".format(
        np.mean(backward_time[len(backward_time) // 4:])))
Example #11
0
def main(args):
    # load graph data
    if args.dataset == 'aifb':
        dataset = AIFBDataset()
    elif args.dataset == 'mutag':
        dataset = MUTAGDataset()
    elif args.dataset == 'bgs':
        dataset = BGSDataset()
    elif args.dataset == 'am':
        dataset = AMDataset()
    else:
        raise ValueError()

    # preprocessing in cpu
    with tf.device("/cpu:0"):
        # Load from hetero-graph
        hg = dataset[0]

        num_rels = len(hg.canonical_etypes)
        num_of_ntype = len(hg.ntypes)
        category = dataset.predict_category
        num_classes = dataset.num_classes
        train_mask = hg.nodes[category].data.pop('train_mask')
        test_mask = hg.nodes[category].data.pop('test_mask')
        train_idx = tf.squeeze(tf.where(train_mask))
        test_idx = tf.squeeze(tf.where(test_mask))
        labels = hg.nodes[category].data.pop('labels')

        # split dataset into train, validate, test
        if args.validation:
            val_idx = train_idx[:len(train_idx) // 5]
            train_idx = train_idx[len(train_idx) // 5:]
        else:
            val_idx = train_idx

        # calculate norm for each edge type and store in edge
        for canonical_etype in hg.canonical_etypes:
            u, v, eid = hg.all_edges(form='all', etype=canonical_etype)
            _, inverse_index, count = tf.unique_with_counts(v)
            degrees = tf.gather(count, inverse_index)
            norm = tf.ones(eid.shape[0]) / tf.cast(degrees, tf.float32)
            norm = tf.expand_dims(norm, 1)
            hg.edges[canonical_etype].data['norm'] = norm

        # get target category id
        category_id = len(hg.ntypes)
        for i, ntype in enumerate(hg.ntypes):
            if ntype == category:
                category_id = i

        # edge type and normalization factor
        g = dgl.to_homo(hg)

    # check cuda
    if args.gpu < 0:
        device = "/cpu:0"
        use_cuda = False
    else:
        device = "/gpu:{}".format(args.gpu)
        g = g.to(device)
        use_cuda = True
    num_nodes = g.number_of_nodes()
    node_ids = tf.range(num_nodes, dtype=tf.int64)
    edge_norm = g.edata['norm']
    edge_type = tf.cast(g.edata[dgl.ETYPE], tf.int64)

    # find out the target node ids in g
    node_tids = g.ndata[dgl.NTYPE]
    loc = (node_tids == category_id)
    target_idx = tf.squeeze(tf.where(loc))

    # since the nodes are featureless, the input feature is then the node id.
    feats = tf.range(num_nodes, dtype=tf.int64)

    with tf.device(device):
        # create model
        model = EntityClassify(num_nodes,
                               args.n_hidden,
                               num_classes,
                               num_rels,
                               num_bases=args.n_bases,
                               num_hidden_layers=args.n_layers - 2,
                               dropout=args.dropout,
                               use_self_loop=args.use_self_loop,
                               use_cuda=use_cuda)

        # optimizer
        optimizer = tf.keras.optimizers.Adam(learning_rate=args.lr)
        # training loop
        print("start training...")
        forward_time = []
        backward_time = []
        loss_fcn = tf.keras.losses.SparseCategoricalCrossentropy(
            from_logits=False)
        for epoch in range(args.n_epochs):
            t0 = time.time()
            with tf.GradientTape() as tape:
                logits = model(g, feats, edge_type, edge_norm)
                logits = tf.gather(logits, target_idx)
                loss = loss_fcn(tf.gather(labels, train_idx),
                                tf.gather(logits, train_idx))
                # Manually Weight Decay
                # We found Tensorflow has a different implementation on weight decay
                # of Adam(W) optimizer with PyTorch. And this results in worse results.
                # Manually adding weights to the loss to do weight decay solves this problem.
                for weight in model.trainable_weights:
                    loss = loss + \
                        args.l2norm * tf.nn.l2_loss(weight)
                t1 = time.time()
                grads = tape.gradient(loss, model.trainable_weights)
                optimizer.apply_gradients(zip(grads, model.trainable_weights))
                t2 = time.time()

            forward_time.append(t1 - t0)
            backward_time.append(t2 - t1)
            print(
                "Epoch {:05d} | Train Forward Time(s) {:.4f} | Backward Time(s) {:.4f}"
                .format(epoch, forward_time[-1], backward_time[-1]))
            train_acc = acc(logits, labels, train_idx)
            val_loss = loss_fcn(tf.gather(labels, val_idx),
                                tf.gather(logits, val_idx))
            val_acc = acc(logits, labels, val_idx)
            print(
                "Train Accuracy: {:.4f} | Train Loss: {:.4f} | Validation Accuracy: {:.4f} | Validation loss: {:.4f}"
                .format(train_acc,
                        loss.numpy().item(), val_acc,
                        val_loss.numpy().item()))
        print()

        logits = model(g, feats, edge_type, edge_norm)
        logits = tf.gather(logits, target_idx)
        test_loss = loss_fcn(tf.gather(labels, test_idx),
                             tf.gather(logits, test_idx))
        test_acc = acc(logits, labels, test_idx)
        print("Test Accuracy: {:.4f} | Test loss: {:.4f}".format(
            test_acc,
            test_loss.numpy().item()))
        print()

        print("Mean forward time: {:4f}".format(
            np.mean(forward_time[len(forward_time) // 4:])))
        print("Mean backward time: {:4f}".format(
            np.mean(backward_time[len(backward_time) // 4:])))
def main(args):
    # load graph data
    if args.dataset == 'aifb':
        dataset = AIFBDataset()
    elif args.dataset == 'mutag':
        dataset = MUTAGDataset()
    elif args.dataset == 'bgs':
        dataset = BGSDataset()
    elif args.dataset == 'am':
        dataset = AMDataset()
    else:
        raise ValueError()

    g = dataset[0]
    category = dataset.predict_category
    num_classes = dataset.num_classes
    train_mask = g.nodes[category].data.pop('train_mask')
    test_mask = g.nodes[category].data.pop('test_mask')
    train_idx = th.nonzero(train_mask).squeeze()
    test_idx = th.nonzero(test_mask).squeeze()
    labels = g.nodes[category].data.pop('labels')
    category_id = len(g.ntypes)
    for i, ntype in enumerate(g.ntypes):
        if ntype == category:
            category_id = i

    # split dataset into train, validate, test
    if args.validation:
        val_idx = train_idx[:len(train_idx) // 5]
        train_idx = train_idx[len(train_idx) // 5:]
    else:
        val_idx = train_idx

    # check cuda
    use_cuda = args.gpu >= 0 and th.cuda.is_available()
    if use_cuda:
        th.cuda.set_device(args.gpu)
        g = g.to('cuda:%d' % args.gpu)
        labels = labels.cuda()
        train_idx = train_idx.cuda()
        test_idx = test_idx.cuda()

    # create model
    model = EntityClassify(g,
                           args.n_hidden,
                           num_classes,
                           num_bases=args.n_bases,
                           num_hidden_layers=args.n_layers - 2,
                           dropout=args.dropout,
                           use_self_loop=args.use_self_loop)

    if use_cuda:
        model.cuda()

    # optimizer
    optimizer = th.optim.Adam(model.parameters(),
                              lr=args.lr,
                              weight_decay=args.l2norm)

    # training loop
    print("start training...")
    dur = []
    model.train()
    for epoch in range(args.n_epochs):
        optimizer.zero_grad()
        if epoch > 5:
            t0 = time.time()
        logits = model()[category]
        loss = F.cross_entropy(logits[train_idx], labels[train_idx])
        loss.backward()
        optimizer.step()
        t1 = time.time()

        if epoch > 5:
            dur.append(t1 - t0)
        train_acc = th.sum(logits[train_idx].argmax(
            dim=1) == labels[train_idx]).item() / len(train_idx)
        val_loss = F.cross_entropy(logits[val_idx], labels[val_idx])
        val_acc = th.sum(logits[val_idx].argmax(
            dim=1) == labels[val_idx]).item() / len(val_idx)
        print(
            "Epoch {:05d} | Train Acc: {:.4f} | Train Loss: {:.4f} | Valid Acc: {:.4f} | Valid loss: {:.4f} | Time: {:.4f}"
            .format(epoch, train_acc, loss.item(), val_acc, val_loss.item(),
                    np.average(dur)))
    print()
    if args.model_path is not None:
        th.save(model.state_dict(), args.model_path)

    model.eval()
    logits = model.forward()[category]
    test_loss = F.cross_entropy(logits[test_idx], labels[test_idx])
    test_acc = th.sum(logits[test_idx].argmax(
        dim=1) == labels[test_idx]).item() / len(test_idx)
    print("Test Acc: {:.4f} | Test loss: {:.4f}".format(
        test_acc, test_loss.item()))
    print()
Example #13
0
def main(args, devices):
    # load graph data
    ogb_dataset = False
    if args.dataset == 'aifb':
        dataset = AIFBDataset()
    elif args.dataset == 'mutag':
        dataset = MUTAGDataset()
    elif args.dataset == 'bgs':
        dataset = BGSDataset()
    elif args.dataset == 'am':
        dataset = AMDataset()
    elif args.dataset == 'ogbn-mag':
        dataset = DglNodePropPredDataset(name=args.dataset)
        ogb_dataset = True
    else:
        raise ValueError()

    if ogb_dataset is True:
        split_idx = dataset.get_idx_split()
        train_idx = split_idx["train"]['paper']
        val_idx = split_idx["valid"]['paper']
        test_idx = split_idx["test"]['paper']
        hg_orig, labels = dataset[0]
        subgs = {}
        for etype in hg_orig.canonical_etypes:
            u, v = hg_orig.all_edges(etype=etype)
            subgs[etype] = (u, v)
            subgs[(etype[2], 'rev-' + etype[1], etype[0])] = (v, u)
        hg = dgl.heterograph(subgs)
        hg.nodes['paper'].data['feat'] = hg_orig.nodes['paper'].data['feat']
        labels = labels['paper'].squeeze()

        num_rels = len(hg.canonical_etypes)
        num_of_ntype = len(hg.ntypes)
        num_classes = dataset.num_classes
        if args.dataset == 'ogbn-mag':
            category = 'paper'
        print('Number of relations: {}'.format(num_rels))
        print('Number of class: {}'.format(num_classes))
        print('Number of train: {}'.format(len(train_idx)))
        print('Number of valid: {}'.format(len(val_idx)))
        print('Number of test: {}'.format(len(test_idx)))

    else:
        # Load from hetero-graph
        hg = dataset[0]

        num_rels = len(hg.canonical_etypes)
        num_of_ntype = len(hg.ntypes)
        category = dataset.predict_category
        num_classes = dataset.num_classes
        train_mask = hg.nodes[category].data.pop('train_mask')
        test_mask = hg.nodes[category].data.pop('test_mask')
        labels = hg.nodes[category].data.pop('labels')
        train_idx = th.nonzero(train_mask, as_tuple=False).squeeze()
        test_idx = th.nonzero(test_mask, as_tuple=False).squeeze()

        # AIFB, MUTAG, BGS and AM datasets do not provide validation set split.
        # Split train set into train and validation if args.validation is set
        # otherwise use train set as the validation set.
        if args.validation:
            val_idx = train_idx[:len(train_idx) // 5]
            train_idx = train_idx[len(train_idx) // 5:]
        else:
            val_idx = train_idx

    node_feats = []
    for ntype in hg.ntypes:
        if len(hg.nodes[ntype].data) == 0 or args.node_feats is False:
            node_feats.append(hg.number_of_nodes(ntype))
        else:
            assert len(hg.nodes[ntype].data) == 1
            feat = hg.nodes[ntype].data.pop('feat')
            node_feats.append(feat.share_memory_())

    # get target category id
    category_id = len(hg.ntypes)
    for i, ntype in enumerate(hg.ntypes):
        if ntype == category:
            category_id = i
        print('{}:{}'.format(i, ntype))

    g = dgl.to_homogeneous(hg)
    g.ndata['ntype'] = g.ndata[dgl.NTYPE]
    g.ndata['ntype'].share_memory_()
    g.edata['etype'] = g.edata[dgl.ETYPE]
    g.edata['etype'].share_memory_()
    g.ndata['type_id'] = g.ndata[dgl.NID]
    g.ndata['type_id'].share_memory_()
    node_ids = th.arange(g.number_of_nodes())

    # find out the target node ids
    node_tids = g.ndata[dgl.NTYPE]
    loc = (node_tids == category_id)
    target_idx = node_ids[loc]
    target_idx.share_memory_()
    train_idx.share_memory_()
    val_idx.share_memory_()
    test_idx.share_memory_()

    # This is a graph with multiple node types, so we want a way to map
    # our target node from their global node numberings, back to their
    # numberings within their type. This is used when taking the nodes in a
    # mini-batch, and looking up their type-specific labels
    inv_target = th.empty(node_ids.shape, dtype=node_ids.dtype)
    inv_target.share_memory_()
    inv_target[target_idx] = th.arange(0,
                                       target_idx.shape[0],
                                       dtype=inv_target.dtype)

    # Create csr/coo/csc formats before launching training processes with multi-gpu.
    # This avoids creating certain formats in each sub-process, which saves momory and CPU.
    g.create_formats_()

    n_gpus = len(devices)
    n_cpus = mp.cpu_count()
    # cpu
    if devices[0] == -1:
        run(0, 0, n_cpus, args, ['cpu'],
            (g, node_feats, num_of_ntype, num_classes, num_rels, target_idx,
             inv_target, train_idx, val_idx, test_idx, labels), None)
    # gpu
    elif n_gpus == 1:
        run(0, n_gpus, n_cpus, args, devices,
            (g, node_feats, num_of_ntype, num_classes, num_rels, target_idx,
             inv_target, train_idx, val_idx, test_idx, labels), None)
    # multi gpu
    else:
        queue = mp.Queue(n_gpus)
        procs = []
        for proc_id in range(n_gpus):
            # We use distributed data parallel dataloader to handle the data
            # splitting
            p = mp.Process(target=run,
                           args=(proc_id, n_gpus, n_cpus // n_gpus, args,
                                 devices,
                                 (g, node_feats, num_of_ntype, num_classes,
                                  num_rels, target_idx, inv_target, train_idx,
                                  val_idx, test_idx, labels), queue))
            p.start()
            procs.append(p)
        for p in procs:
            p.join()