def __init__(self, k, feature_dims, emb_dims, output_classes, input_dims=3, dropout_prob=0.5): super(DgcnnModel, self).__init__() self.nng = KNNGraph(k) self.conv = nn.ModuleList() self.num_layers = len(feature_dims) for i in range(self.num_layers): self.conv.append(EdgeConv( feature_dims[i - 1] if i > 0 else input_dims, feature_dims[i], batch_norm=True)) self.proj = nn.Linear(sum(feature_dims), emb_dims[0]) self.embs = nn.ModuleList() self.bn_embs = nn.ModuleList() self.dropouts = nn.ModuleList() self.num_embs = len(emb_dims) - 1 for i in range(1, self.num_embs + 1): self.embs.append(nn.Linear( # * 2 because of concatenation of max- and mean-pooling emb_dims[i - 1] if i > 1 else (emb_dims[i - 1] * 2), emb_dims[i])) # self.bn_embs.append(nn.BatchNorm1d(emb_dims[i])) self.dropouts.append(nn.Dropout(dropout_prob)) self.proj_output = nn.Linear(emb_dims[-1], output_classes)
def __init__(self, k = 10, feature_dims = [64, 64, 128, 256], emb_dims = [512, 512, 256], input_dims=3, output_dims=1024): super(GNN, self).__init__() self.nng = KNNGraph(k) self.conv = nn.ModuleList() self.num_layers = len(feature_dims) for i in range(self.num_layers): self.conv.append(EdgeConv( feature_dims[i - 1] if i > 0 else input_dims, feature_dims[i], batch_norm=True)) self.proj = nn.Linear(sum(feature_dims), emb_dims[0])
def __init__(self, k, in_dim: int, emb_dims: list, out_dim: int): super(DescripNet, self).__init__() self.knng = KNNGraph(k) self.conv = nn.ModuleList() self.feat_nn = nn.Sequential(nn.Linear(emb_dims[-2], emb_dims[-1]), nn.ReLU()) self.gate_nn = nn.Sequential(nn.Linear(emb_dims[-2], 1), nn.ReLU()) self.global_attention_pooling = GlobalAttentionPooling( gate_nn=self.gate_nn, feat_nn=self.feat_nn) self.last_layer = nn.Linear(emb_dims[-1], out_dim) for i in range(len(emb_dims) - 1): self.conv.append( EdgeConv(emb_dims[i - 1] if i > 0 else in_dim, emb_dims[i], batch_norm=True))
def __getitem__(self, idx): if idx == 0: start = 0 start_hr = 0 else: start = self.cumsum[idx-1] start_hr = self.cumsum_highres[idx-1] end = self.cumsum[idx] end_hr = self.cumsum_highres[idx] # print('start : ', start) # print('end : ', end) # print('start_hr : ', start_hr) # print('end_hr : ', end_hr) cell_xyz = self.file['CellXYLayer'][start:end] energies = self.file['TotalEnergy'][start:end] neu_energies = self.file['NeutralEnergy'][start:end] cell_xyz_highres = np.concatenate([goes_to_dict[(l,x,y)] for l,x,y in cell_xyz if l < 3]) energies_highres = self.file['TotalEnergy_HighRes'][start_hr:end_hr] neu_energies_highres = self.file['NeutralEnergy_HighRes'][start_hr:end_hr] cell_xyz_val = np.array([ Get_XYZ_val(idx[0], idx[1], idx[2]) for idx in cell_xyz ]) cell_xyz_val = np.reshape( cell_xyz_val, (1, cell_xyz_val.shape[0], cell_xyz_val.shape[1]) ) cell_xyz_val = torch.FloatTensor(cell_xyz_val) cell_xyz_val_hr = np.array([ Get_XYZ_val(idx[0], idx[1], idx[2], highres=True) for idx in cell_xyz_highres ]) cell_xyz_val_hr = np.reshape( cell_xyz_val_hr, (1, cell_xyz_val_hr.shape[0], cell_xyz_val_hr.shape[1]) ) cell_xyz_val_hr = torch.FloatTensor(cell_xyz_val_hr) cell_layers = cell_xyz[:,0] #b_factors = [scale_factors[l_i] for l_i in cell_layers] b_factors = [] for l_i in cell_layers : if(l_i < 3) : b_factors.append( scale_factors[l_i] ) else : b_factors.append( 0 ) graph = KNNGraph(graph_size) g = graph(cell_xyz_val) g = dgl.transform.remove_self_loop(g) g.ndata['energy'] = torch.reshape(torch.FloatTensor(energies), ( torch.FloatTensor(energies).shape[0],1 ) ) g.ndata['broadcast'] = torch.tensor(b_factors) g.ndata['parent_node'] = g.number_of_nodes() * torch.ones([ g.number_of_nodes() ], dtype=torch.int) g.ndata['_ID'] = g.nodes() g.ndata['cell_xyz'] = cell_xyz g.ndata['neu_energy'] = neu_energies[:, None] g_hr = graph(cell_xyz_val_hr) g_hr = dgl.transform.remove_self_loop(g_hr) g_hr.ndata['energy'] = torch.FloatTensor(energies_highres) frac_hr = torch.FloatTensor(neu_energies_highres)/torch.FloatTensor(energies_highres) frac_hr[ torch.isnan(frac_hr) ] = 0. frac_hr[ torch.where(frac_hr < 0.) ] = 0. g_hr.ndata['neu_frac'] = frac_hr[:, None] g_hr.ndata['neu_energy'] = neu_energies_highres[:, None] #g_hr.ndata['cell_xyz_highres'] = cell_xyz_highres g_out_hr = graph(cell_xyz_val_hr) g_out_hr = dgl.transform.remove_self_loop(g_out_hr) g_out_hr.ndata['cell_xyz_highres'] = cell_xyz_highres pi0_phi = self.file['Pi0_Phi'][idx:idx+1] pi0_theta = self.file['Pi0_Theta'][idx:idx+1] sample = { 'gr' : g, 'gr_hr' : g_hr, 'gr_out_hr' : g_out_hr, 'pi0_theta' : torch.FloatTensor( np.cos(pi0_theta) ), 'pi0_phi' : torch.FloatTensor( np.cos(pi0_phi) ) # 'cell_xyz' : cell_xyz, # 'cell_xyz_highres' : cell_xyz_highres } return sample
def __getitem__(self, idx): idx = idx + self.nstart if idx == 0: start = 0 start_hr = 0 else: start = self.cumsum[idx - 1] start_hr = self.cumsum_highres[idx - 1] end = self.cumsum[idx] end_hr = self.cumsum_highres[idx] # print('start : ', start) # print('end : ', end) # print('start_hr : ', start_hr) # print('end_hr : ', end_hr) Trk_X_indx = self.file['Trk_X_indx'][idx:idx + 1] Trk_Y_indx = self.file['Trk_Y_indx'][idx:idx + 1] cell_xyz = self.file['CellXYLayer'][start:end] energies = self.file['TotalEnergy'][start:end] neu_energies = self.file['NeutralEnergy'][start:end] cell_xyz_highres = np.concatenate( [goes_to_dict[(l, x, y)] for l, x, y in cell_xyz if l < 3]) energies_highres = self.file['TotalEnergy_HighRes'][start_hr:end_hr] neu_energies_highres = self.file['NeutralEnergy_HighRes'][ start_hr:end_hr] cell_xyz_val = np.array( [Get_XYZ_val(idx[0], idx[1], idx[2]) for idx in cell_xyz]) cell_xyz_val = np.reshape( cell_xyz_val, (1, cell_xyz_val.shape[0], cell_xyz_val.shape[1])) cell_xyz_val = torch.FloatTensor(cell_xyz_val) cell_xyz_val_hr = np.array([ Get_XYZ_val(idx[0], idx[1], idx[2], highres=True) for idx in cell_xyz_highres ]) cell_xyz_val_hr = np.reshape( cell_xyz_val_hr, (1, cell_xyz_val_hr.shape[0], cell_xyz_val_hr.shape[1])) cell_xyz_val_hr = torch.FloatTensor(cell_xyz_val_hr) cell_layers = cell_xyz[:, 0] #b_factors = [scale_factors[l_i] for l_i in cell_layers] b_factors = [] for l_i in cell_layers: if (l_i < 3): b_factors.append(scale_factors[l_i]) else: b_factors.append(0) graph = KNNGraph(graph_size) g = graph(cell_xyz_val) g = dgl.transform.remove_self_loop(g) g.ndata['neu_energy'] = neu_energies[:, None] g.ndata['cell_xyz'] = cell_xyz broad_neu_energy = torch.repeat_interleave(torch.tensor(neu_energies), torch.tensor(b_factors), dim=0) g_hr = graph(cell_xyz_val_hr) g_hr = dgl.transform.remove_self_loop(g_hr) g_hr.ndata['broad_neu_energy'] = torch.FloatTensor( broad_neu_energy)[:, None] frac_hr = torch.FloatTensor(neu_energies_highres) / torch.FloatTensor( broad_neu_energy) frac_hr[torch.isnan(frac_hr)] = 0. frac_hr[torch.where(frac_hr < 0.)] = 0. g_hr.ndata['neu_frac'] = frac_hr[:, None] g_hr.ndata['neu_energy'] = neu_energies_highres[:, None] g_hr.ndata['cell_xyz_highres'] = cell_xyz_highres g_hr.ndata['broad_factor'] = torch.repeat_interleave( torch.tensor(b_factors), torch.tensor(b_factors), dim=0)[:, None] #print('Neu energy shape : ', cell_xyz[ np.where(cell_xyz[:,0] < 6) ].shape) sample = { 'gr': g, 'gr_hr': g_hr, 'Trk_X_indx': Trk_X_indx, 'Trk_Y_indx': Trk_Y_indx } return sample
def __init__(self, k, feature_dims, emb_dims): super(Model, self).__init__() self.nng = KNNGraph(k) self.conv = EdgeConv(feature_dims, emb_dims, False)