def __init__(self, k, feature_dims, emb_dims, output_classes, input_dims=3,
                 dropout_prob=0.5):
        super(DgcnnModel, self).__init__()

        self.nng = KNNGraph(k)
        self.conv = nn.ModuleList()

        self.num_layers = len(feature_dims)
        for i in range(self.num_layers):
            self.conv.append(EdgeConv(
                feature_dims[i - 1] if i > 0 else input_dims,
                feature_dims[i],
                batch_norm=True))

        self.proj = nn.Linear(sum(feature_dims), emb_dims[0])

        self.embs = nn.ModuleList()
        self.bn_embs = nn.ModuleList()
        self.dropouts = nn.ModuleList()

        self.num_embs = len(emb_dims) - 1
        for i in range(1, self.num_embs + 1):
            self.embs.append(nn.Linear(
                # * 2 because of concatenation of max- and mean-pooling
                emb_dims[i - 1] if i > 1 else (emb_dims[i - 1] * 2),
                emb_dims[i]))
            # self.bn_embs.append(nn.BatchNorm1d(emb_dims[i]))
            self.dropouts.append(nn.Dropout(dropout_prob))

        self.proj_output = nn.Linear(emb_dims[-1], output_classes)
Example #2
0
 def __init__(self, k = 10, feature_dims = [64, 64, 128, 256], emb_dims = [512, 512, 256],
              input_dims=3, output_dims=1024):
     super(GNN, self).__init__()
     self.nng = KNNGraph(k)
     self.conv = nn.ModuleList()
     self.num_layers = len(feature_dims)
     for i in range(self.num_layers):
         self.conv.append(EdgeConv(
             feature_dims[i - 1] if i > 0 else input_dims,
             feature_dims[i],
             batch_norm=True))
     self.proj = nn.Linear(sum(feature_dims), emb_dims[0])
    def __init__(self, k, in_dim: int, emb_dims: list, out_dim: int):
        super(DescripNet, self).__init__()

        self.knng = KNNGraph(k)
        self.conv = nn.ModuleList()

        self.feat_nn = nn.Sequential(nn.Linear(emb_dims[-2], emb_dims[-1]),
                                     nn.ReLU())
        self.gate_nn = nn.Sequential(nn.Linear(emb_dims[-2], 1), nn.ReLU())
        self.global_attention_pooling = GlobalAttentionPooling(
            gate_nn=self.gate_nn, feat_nn=self.feat_nn)
        self.last_layer = nn.Linear(emb_dims[-1], out_dim)
        for i in range(len(emb_dims) - 1):
            self.conv.append(
                EdgeConv(emb_dims[i - 1] if i > 0 else in_dim,
                         emb_dims[i],
                         batch_norm=True))
    def __getitem__(self, idx):
        
        if idx == 0:
            start = 0
            start_hr = 0
        else:
            start = self.cumsum[idx-1]
            start_hr = self.cumsum_highres[idx-1]
            
        end = self.cumsum[idx]
        end_hr = self.cumsum_highres[idx]
                
#         print('start : ', start)
#         print('end : ', end)
        
#         print('start_hr : ', start_hr)
#         print('end_hr : ', end_hr)
        
        cell_xyz = self.file['CellXYLayer'][start:end]
        energies = self.file['TotalEnergy'][start:end]
        neu_energies = self.file['NeutralEnergy'][start:end]
              
        
        cell_xyz_highres = np.concatenate([goes_to_dict[(l,x,y)] for l,x,y in cell_xyz if l < 3])
        energies_highres = self.file['TotalEnergy_HighRes'][start_hr:end_hr]
        neu_energies_highres = self.file['NeutralEnergy_HighRes'][start_hr:end_hr]
        
        cell_xyz_val = np.array([ Get_XYZ_val(idx[0], idx[1], idx[2]) for idx in cell_xyz ])
        cell_xyz_val = np.reshape( cell_xyz_val, (1, cell_xyz_val.shape[0], cell_xyz_val.shape[1]) )
        cell_xyz_val = torch.FloatTensor(cell_xyz_val)
        
        cell_xyz_val_hr = np.array([ Get_XYZ_val(idx[0], idx[1], idx[2], highres=True) for idx in cell_xyz_highres ])
        cell_xyz_val_hr = np.reshape( cell_xyz_val_hr, (1, cell_xyz_val_hr.shape[0], cell_xyz_val_hr.shape[1]) )
        cell_xyz_val_hr = torch.FloatTensor(cell_xyz_val_hr)
        
        
        cell_layers = cell_xyz[:,0]
        #b_factors = [scale_factors[l_i] for l_i in cell_layers]
        
        b_factors = []
        for l_i in cell_layers : 
            if(l_i < 3) : 
                b_factors.append( scale_factors[l_i] )   
            else : 
                b_factors.append( 0 )
        
        
        graph = KNNGraph(graph_size)
        
        g = graph(cell_xyz_val)
        g = dgl.transform.remove_self_loop(g)
        g.ndata['energy'] = torch.reshape(torch.FloatTensor(energies), (  torch.FloatTensor(energies).shape[0],1 ) )
        g.ndata['broadcast'] = torch.tensor(b_factors)
        
        g.ndata['parent_node'] = g.number_of_nodes() * torch.ones([ g.number_of_nodes() ], dtype=torch.int)
        g.ndata['_ID'] = g.nodes()
        g.ndata['cell_xyz'] = cell_xyz
        g.ndata['neu_energy'] = neu_energies[:, None]
        
        g_hr = graph(cell_xyz_val_hr)
        g_hr = dgl.transform.remove_self_loop(g_hr)
        
        g_hr.ndata['energy'] = torch.FloatTensor(energies_highres)       
        frac_hr = torch.FloatTensor(neu_energies_highres)/torch.FloatTensor(energies_highres)
        frac_hr[ torch.isnan(frac_hr) ] = 0.  
        frac_hr[ torch.where(frac_hr < 0.) ] = 0.
        g_hr.ndata['neu_frac'] = frac_hr[:, None]
        g_hr.ndata['neu_energy'] = neu_energies_highres[:, None]
        #g_hr.ndata['cell_xyz_highres'] = cell_xyz_highres
        
        g_out_hr = graph(cell_xyz_val_hr)
        g_out_hr = dgl.transform.remove_self_loop(g_out_hr)
        g_out_hr.ndata['cell_xyz_highres'] = cell_xyz_highres
        
        pi0_phi = self.file['Pi0_Phi'][idx:idx+1]
        pi0_theta = self.file['Pi0_Theta'][idx:idx+1]
        
        sample = {
            'gr' : g,
            'gr_hr' : g_hr,
            'gr_out_hr' : g_out_hr,
            'pi0_theta' : torch.FloatTensor( np.cos(pi0_theta) ),
            'pi0_phi' : torch.FloatTensor( np.cos(pi0_phi) )
#             'cell_xyz' : cell_xyz,
#             'cell_xyz_highres' : cell_xyz_highres
            
            
        }
        
        return sample
    def __getitem__(self, idx):

        idx = idx + self.nstart

        if idx == 0:
            start = 0
            start_hr = 0
        else:
            start = self.cumsum[idx - 1]
            start_hr = self.cumsum_highres[idx - 1]

        end = self.cumsum[idx]
        end_hr = self.cumsum_highres[idx]

        #         print('start : ', start)
        #         print('end : ', end)

        #         print('start_hr : ', start_hr)
        #         print('end_hr : ', end_hr)

        Trk_X_indx = self.file['Trk_X_indx'][idx:idx + 1]
        Trk_Y_indx = self.file['Trk_Y_indx'][idx:idx + 1]

        cell_xyz = self.file['CellXYLayer'][start:end]
        energies = self.file['TotalEnergy'][start:end]
        neu_energies = self.file['NeutralEnergy'][start:end]

        cell_xyz_highres = np.concatenate(
            [goes_to_dict[(l, x, y)] for l, x, y in cell_xyz if l < 3])
        energies_highres = self.file['TotalEnergy_HighRes'][start_hr:end_hr]
        neu_energies_highres = self.file['NeutralEnergy_HighRes'][
            start_hr:end_hr]

        cell_xyz_val = np.array(
            [Get_XYZ_val(idx[0], idx[1], idx[2]) for idx in cell_xyz])
        cell_xyz_val = np.reshape(
            cell_xyz_val, (1, cell_xyz_val.shape[0], cell_xyz_val.shape[1]))
        cell_xyz_val = torch.FloatTensor(cell_xyz_val)

        cell_xyz_val_hr = np.array([
            Get_XYZ_val(idx[0], idx[1], idx[2], highres=True)
            for idx in cell_xyz_highres
        ])
        cell_xyz_val_hr = np.reshape(
            cell_xyz_val_hr,
            (1, cell_xyz_val_hr.shape[0], cell_xyz_val_hr.shape[1]))
        cell_xyz_val_hr = torch.FloatTensor(cell_xyz_val_hr)

        cell_layers = cell_xyz[:, 0]
        #b_factors = [scale_factors[l_i] for l_i in cell_layers]

        b_factors = []
        for l_i in cell_layers:
            if (l_i < 3):
                b_factors.append(scale_factors[l_i])
            else:
                b_factors.append(0)

        graph = KNNGraph(graph_size)

        g = graph(cell_xyz_val)
        g = dgl.transform.remove_self_loop(g)
        g.ndata['neu_energy'] = neu_energies[:, None]
        g.ndata['cell_xyz'] = cell_xyz

        broad_neu_energy = torch.repeat_interleave(torch.tensor(neu_energies),
                                                   torch.tensor(b_factors),
                                                   dim=0)

        g_hr = graph(cell_xyz_val_hr)
        g_hr = dgl.transform.remove_self_loop(g_hr)

        g_hr.ndata['broad_neu_energy'] = torch.FloatTensor(
            broad_neu_energy)[:, None]
        frac_hr = torch.FloatTensor(neu_energies_highres) / torch.FloatTensor(
            broad_neu_energy)
        frac_hr[torch.isnan(frac_hr)] = 0.
        frac_hr[torch.where(frac_hr < 0.)] = 0.
        g_hr.ndata['neu_frac'] = frac_hr[:, None]
        g_hr.ndata['neu_energy'] = neu_energies_highres[:, None]
        g_hr.ndata['cell_xyz_highres'] = cell_xyz_highres
        g_hr.ndata['broad_factor'] = torch.repeat_interleave(
            torch.tensor(b_factors), torch.tensor(b_factors), dim=0)[:, None]

        #print('Neu energy shape : ', cell_xyz[ np.where(cell_xyz[:,0] < 6) ].shape)

        sample = {
            'gr': g,
            'gr_hr': g_hr,
            'Trk_X_indx': Trk_X_indx,
            'Trk_Y_indx': Trk_Y_indx
        }

        return sample
Example #6
0
    def __init__(self, k, feature_dims, emb_dims):
        super(Model, self).__init__()

        self.nng = KNNGraph(k)
        self.conv = EdgeConv(feature_dims, emb_dims, False)