Example #1
0
def test_remove_edges():
    def check(g1, etype, g, edges_removed):
        src, dst, eid = g.edges(etype=etype, form='all')
        src1, dst1 = g1.edges(etype=etype, order='eid')
        if etype is not None:
            eid1 = g1.edges[etype].data[dgl.EID]
        else:
            eid1 = g1.edata[dgl.EID]
        src1 = F.asnumpy(src1)
        dst1 = F.asnumpy(dst1)
        eid1 = F.asnumpy(eid1)
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        eid = F.asnumpy(eid)
        sde_set = set(zip(src, dst, eid))

        for s, d, e in zip(src1, dst1, eid1):
            assert (s, d, e) in sde_set
        assert not np.isin(edges_removed, eid1).any()

    for fmt in ['coo', 'csr', 'csc']:
        for edges_to_remove in [[2], [2, 2], [3, 2], [1, 3, 1, 2]]:
            g = dgl.graph([(0, 1), (2, 3), (1, 2), (3, 4)],
                          restrict_format=fmt)
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove))
            check(g1, None, g, edges_to_remove)

            g = dgl.graph(spsp.csr_matrix(
                ([1, 1, 1, 1], ([0, 2, 1, 3], [1, 3, 2, 4])), shape=(5, 5)),
                          restrict_format=fmt)
            g1 = dgl.remove_edges(g, F.tensor(edges_to_remove))
            check(g1, None, g, edges_to_remove)

    g = dgl.heterograph({
        ('A', 'AA', 'A'): [(0, 1), (2, 3), (1, 2), (3, 4)],
        ('A', 'AB', 'B'): [(0, 1), (1, 3), (3, 5), (1, 6)],
        ('B', 'BA', 'A'): [(2, 3), (3, 2)]
    })
    g2 = dgl.remove_edges(g, {
        'AA': F.tensor([2]),
        'AB': F.tensor([3]),
        'BA': F.tensor([1])
    })
    check(g2, 'AA', g, [2])
    check(g2, 'AB', g, [3])
    check(g2, 'BA', g, [1])

    g3 = dgl.remove_edges(g, {
        'AA': F.tensor([]),
        'AB': F.tensor([3]),
        'BA': F.tensor([1])
    })
    check(g3, 'AA', g, [])
    check(g3, 'AB', g, [3])
    check(g3, 'BA', g, [1])

    g4 = dgl.remove_edges(g, {'AB': F.tensor([3, 1, 2, 0])})
    check(g4, 'AA', g, [])
    check(g4, 'AB', g, [3, 1, 2, 0])
    check(g4, 'BA', g, [])
Example #2
0
    def construct_blocks(self, seeds, user_item_pairs_to_remove):
        blocks = []
        users, items = user_item_pairs_to_remove
        # 采样就是根据卷积层数选取对应数量的邻居结点
        # 涉及到双向图的处理
        for i in range(self.num_layers):
            sampled_graph = dgl.in_subgraph(self.graph, seeds)
            sampled_eids = sampled_graph.edges[('user', 'watched',
                                                'item')].data[dgl.EID]
            sampled_eids_rev = sampled_graph.edges[('item', 'watchedby',
                                                    'user')].data[dgl.EID]

            # 训练时要去掉用户和项目间的关联
            _, _, edges_to_remove = sampled_graph.edge_ids(users,
                                                           items,
                                                           etype=('user',
                                                                  'watched',
                                                                  'item'),
                                                           return_uv=True)
            _, _, edges_to_remove_rev = sampled_graph.edge_ids(
                items,
                users,
                etype=('item', 'watchedby', 'user'),
                return_uv=True)

            # sampled_with_edges_removed = dgl.remove_edges(
            #     sampled_graph,
            #     {('user', 'watched', 'item'): edges_to_remove, ('item', 'watchedby', 'user'): edges_to_remove_rev}
            # )

            sampled_with_edges_removed = dgl.remove_edges(
                sampled_graph, edges_to_remove, ('user', 'watched', 'item'))
            sampled_with_edges_removed = dgl.remove_edges(
                sampled_with_edges_removed, edges_to_remove_rev,
                ('item', 'watchedby', 'user'))

            sampled_eids = sampled_eids[sampled_with_edges_removed.edges[(
                'user', 'watched', 'item')].data[dgl.EID]]
            sampled_eids_rev = sampled_eids_rev[
                sampled_with_edges_removed.edges[('item', 'watchedby',
                                                  'user')].data[dgl.EID]]

            # 创建子图块
            block = dgl.to_block(sampled_with_edges_removed, seeds)
            blocks.insert(0, block)
            seeds = {
                'user': block.srcnodes['user'].data[dgl.NID],
                'item': block.srcnodes['item'].data[dgl.NID]
            }

            # 把评分复制过去
            block.edges[('user', 'watched', 'item')].data['rating'] = \
                self.graph.edges[('user', 'watched', 'item')].data['rating'][sampled_eids]
            block.edges[('item', 'watchedby', 'user')].data['rating'] = \
                self.graph.edges[('item', 'watchedby', 'user')].data['rating'][sampled_eids_rev]

        return blocks
Example #3
0
File: deduce.py Project: yuk12/dgl
def decode(g, tau, threshold, use_gt,
           ids=None, global_edges=None, global_num_nodes=None, global_peaks=None):
    # Edge filtering with tau and density
    den_key = 'density' if use_gt else 'pred_den'
    g = g.local_var()
    g.edata['edge_dist'] = get_edge_dist(g, threshold)
    g.apply_edges(lambda edges: {'keep': (edges.src[den_key] > edges.dst[den_key]).long() * \
                                         (edges.data['edge_dist'] < 1 - tau).long()})
    eids = torch.where(g.edata['keep'] == 0)[0]
    ng = dgl.remove_edges(g, eids)

    # Tree generation
    ng.edata[dgl.EID] = torch.arange(ng.number_of_edges())
    treeg = tree_generation(ng)
    # Label propogation
    peaks, pred_labels = peak_propogation(treeg)

    if ids is None:
        return pred_labels, peaks

    # Merge with previous layers
    src, dst = treeg.edges()
    new_global_edges = (global_edges[0] + ids[src.numpy()].tolist(), 
                        global_edges[1] + ids[dst.numpy()].tolist()) 
    global_treeg = dgl.graph(new_global_edges, num_nodes=global_num_nodes)
    global_peaks, global_pred_labels = peak_propogation(global_treeg)
    return pred_labels, peaks, new_global_edges, global_pred_labels, global_peaks
Example #4
0
def split_data(g):
    # Split edge set for training and testing
    u, v = g.edges()

    eids = np.arange(g.number_of_edges())
    eids = np.random.permutation(eids)
    test_size = int(len(eids) * 0.1)
    train_size = g.number_of_edges() - test_size
    test_pos_u, test_pos_v = u[eids[:test_size]], v[eids[:test_size]]
    train_pos_u, train_pos_v = u[eids[test_size:]], v[eids[test_size:]]

    # Find all negative edges and split them for training and testing
    adj = sp.coo_matrix((np.ones(len(u)), (u.numpy(), v.numpy())))
    adj_neg = 1 - adj.todense() - np.eye(g.number_of_nodes())
    neg_u, neg_v = np.where(adj_neg != 0)

    neg_eids = np.random.choice(len(neg_u), g.number_of_edges() // 2)
    test_neg_u, test_neg_v = neg_u[neg_eids[:test_size]], neg_v[
        neg_eids[:test_size]]
    train_neg_u, train_neg_v = neg_u[neg_eids[test_size:]], neg_v[
        neg_eids[test_size:]]

    train_g = dgl.remove_edges(g, eids[:test_size])

    train_pos_g = dgl.graph((train_pos_u, train_pos_v),
                            num_nodes=g.number_of_nodes())
    train_neg_g = dgl.graph((train_neg_u, train_neg_v),
                            num_nodes=g.number_of_nodes())

    test_pos_g = dgl.graph((test_pos_u, test_pos_v),
                           num_nodes=g.number_of_nodes())
    test_neg_g = dgl.graph((test_neg_u, test_neg_v),
                           num_nodes=g.number_of_nodes())

    return train_g, train_pos_g, train_neg_g, test_pos_g, test_neg_g
    def sample_blocks(self, seed_edges):
        n_edges = len(seed_edges)
        seed_edges = th.LongTensor(np.asarray(seed_edges))
        heads, tails = self.g.find_edges(seed_edges)
        if self.neg_share and n_edges % self.num_negs == 0:
            neg_tails = self.neg_sampler(n_edges)
            neg_tails = (neg_tails.view(-1, 1, self.num_negs).expand(
                n_edges // self.num_negs, self.num_negs,
                self.num_negs).flatten())
            neg_heads = (heads.view(-1, 1).expand(n_edges,
                                                  self.num_negs).flatten())
        else:
            neg_tails = self.neg_sampler(self.num_negs * n_edges)
            neg_heads = (heads.view(-1, 1).expand(n_edges,
                                                  self.num_negs).flatten())

        # Maintain the correspondence between heads, tails and negative tails as two
        # graphs.
        # pos_graph contains the correspondence between each head and its positive tail.
        # neg_graph contains the correspondence between each head and its negative tails.
        # Both pos_graph and neg_graph are first constructed with the same node space as
        # the original graph.  Then they are compacted together with dgl.compact_graphs.
        pos_graph = dgl.graph((heads, tails),
                              num_nodes=self.g.number_of_nodes())
        neg_graph = dgl.graph((neg_heads, neg_tails),
                              num_nodes=self.g.number_of_nodes())
        pos_graph, neg_graph = dgl.compact_graphs([pos_graph, neg_graph])

        # Obtain the node IDs being used in either pos_graph or neg_graph.  Since they
        # are compacted together, pos_graph and neg_graph share the same compacted node
        # space.
        seeds = pos_graph.ndata[dgl.NID]
        blocks = []
        for fanout in self.fanouts:
            # For each seed node, sample ``fanout`` neighbors.
            frontier = dgl.sampling.sample_neighbors(self.g,
                                                     seeds,
                                                     fanout,
                                                     replace=True)
            # Remove all edges between heads and tails, as well as heads and neg_tails.
            _, _, edge_ids = frontier.edge_ids(
                th.cat([heads, tails, neg_heads, neg_tails]),
                th.cat([tails, heads, neg_tails, neg_heads]),
                return_uv=True,
            )
            frontier = dgl.remove_edges(frontier, edge_ids)
            # Then we compact the frontier into a bipartite graph for message passing.
            block = dgl.to_block(frontier, seeds)

            # Pre-generate CSR format that it can be used in training directly
            block.in_degree(0)
            # Obtain the seed nodes for next layer.
            seeds = block.srcdata[dgl.NID]

            blocks.insert(0, block)

        # Pre-generate CSR format that it can be used in training directly
        return pos_graph, neg_graph, blocks
Example #6
0
    def __split_edges_train_val_test(
        cls, g: dgl.DGLGraph, train_ratio: float, val_ratio: float
    ) -> _typing.Tuple[dgl.DGLGraph, dgl.DGLGraph, dgl.DGLGraph, dgl.DGLGraph,
                       dgl.DGLGraph, dgl.DGLGraph, dgl.DGLGraph]:
        u, v = g.edges()

        eids = np.arange(g.number_of_edges())
        eids = np.random.permutation(eids)

        valid_size = int(len(eids) * val_ratio)
        test_size = int(len(eids) * (1 - train_ratio - val_ratio))
        train_size = g.number_of_edges() - test_size - valid_size

        test_pos_u, test_pos_v = u[eids[:test_size]], v[eids[:test_size]]
        valid_pos_u, valid_pos_v = u[
            eids[test_size:test_size +
                 valid_size]], v[eids[test_size:test_size + valid_size]]
        train_pos_u, train_pos_v = u[eids[test_size +
                                          valid_size:]], v[eids[test_size +
                                                                valid_size:]]

        # Find all negative edges and split them for training and testing
        adj = sp.coo_matrix((np.ones(len(u)), (u.numpy(), v.numpy())))
        adj_neg = 1 - adj.todense() - np.eye(g.number_of_nodes())
        neg_u, neg_v = np.where(adj_neg != 0)

        neg_eids = np.random.choice(len(neg_u), g.number_of_edges())
        test_neg_u, test_neg_v = neg_u[neg_eids[:test_size]], neg_v[
            neg_eids[:test_size]]
        valid_neg_u, valid_neg_v = neg_u[
            neg_eids[test_size:test_size +
                     valid_size]], neg_v[neg_eids[test_size:test_size +
                                                  valid_size]]
        train_neg_u, train_neg_v = neg_u[
            neg_eids[test_size + valid_size:]], neg_v[neg_eids[test_size +
                                                               valid_size:]]

        train_g = dgl.remove_edges(g, eids[:test_size + valid_size])

        train_pos_g = dgl.graph((train_pos_u, train_pos_v),
                                num_nodes=g.number_of_nodes())
        train_neg_g = dgl.graph((train_neg_u, train_neg_v),
                                num_nodes=g.number_of_nodes())

        valid_pos_g = dgl.graph((valid_pos_u, valid_pos_v),
                                num_nodes=g.number_of_nodes())
        valid_neg_g = dgl.graph((valid_neg_u, valid_neg_v),
                                num_nodes=g.number_of_nodes())

        test_pos_g = dgl.graph((test_pos_u, test_pos_v),
                               num_nodes=g.number_of_nodes())
        test_neg_g = dgl.graph((test_neg_u, test_neg_v),
                               num_nodes=g.number_of_nodes())

        return (train_g, train_pos_g, train_neg_g, valid_pos_g, valid_neg_g,
                test_pos_g, test_neg_g)
Example #7
0
 def sample_blocks(self, seeds, heads=None, tails=None, neg_tails=None):
     blocks = []
     for sampler in self.samplers:
         frontier = sampler(seeds)
         if heads is not None:
             eids = frontier.edge_ids(torch.cat([heads, heads]), torch.cat([tails, neg_tails]), return_uv=True)[2]
             if len(eids) > 0:
                 old_frontier = frontier
                 frontier = dgl.remove_edges(old_frontier, eids)
                 frontier.edata['weights'] = old_frontier.edata['weights'][frontier.edata[dgl.EID]]
         block = compact_and_copy(frontier, seeds)
         seeds = block.srcdata[dgl.NID]
         blocks.insert(0, block)
     return blocks
Example #8
0
 def sample_blocks(self, seeds, heads=None, tails=None, neg_tails=None):
     blocks = []
     context_dicts = []
     for sampler in self.samplers:
         frontier, context_dict = sampler(seeds)
         if heads is not None:
             # edge ids node pointing to itself
             eids = frontier.edge_ids(torch.cat([heads, heads]), torch.cat([tails, neg_tails]), return_uv=True)[2]
             if len(eids) > 0:
                 frontier = dgl.remove_edges(frontier, eids)  # remove edge if the node pointing to itself
         block = compact_and_copy(frontier, seeds)
         seeds = block.srcdata[dgl.NID]
         blocks.insert(0, block)
         context_dicts.insert(0, context_dict)
     return blocks, context_dicts
Example #9
0
    def sample_blocks(self, seeds, heads=None, tails=None, neg_tails=None):
        blocks = []
        for sampler in self.samplers:
            frontier = sampler(seeds)

            # if sampling for pairs, remove any direct edges between the pairs
            if heads is not None:
                eids = frontier.edge_ids(
                    torch.cat([heads, heads]),
                    torch.cat([tails, neg_tails]),
                    return_uv=True,
                )[2]
                if len(eids) > 0:
                    old_frontier = frontier
                    frontier = dgl.remove_edges(old_frontier, eids)

            block = compact_and_copy(frontier, seeds)
            seeds = block.srcdata[dgl.NID]
            blocks.insert(0, block)
        return blocks
Example #10
0
 def extract_graph(self, G, u_id, v_id):
     v_id += self.num_user
     static_u = torch.zeros(len(self.class_values))
     static_v = torch.zeros(len(self.class_values))
     #start0 = time.time()
     u_nodes, v, e_ids = G.out_edges(u_id, "all")
     u, v_nodes, e_ids = G.in_edges(v_id, "all")
     nodes = torch.cat([u, v])
     if self.testing:
         nodes = torch.cat([nodes, torch.tensor([u_id, v_id])])
     #start1 = time.time()
     #print(start1 - start0)
     subg = G.subgraph(nodes)
     #start2 = time.time()
     #print(start2 - start1)
     subg.ndata['node_label'] = torch.zeros([nodes.shape[0], 4])
     pid = subg.ndata[dgl.NID]
     #start3 = time.time()
     #print(start3 - start2)
     for i in range(pid.shape[0]):
         if pid[i] == u_id:
             e_u = i
             subg.ndata['node_label'][i, 0] = 1
         elif pid[i] == v_id:
             e_v = i
             subg.ndata['node_label'][i, 1] = 1
         elif pid[i] in u:
             subg.ndata['node_label'][i, 2] = 1
         elif pid[i] in v:
             subg.ndata['node_label'][i, 3] = 1
     #start4 = time.time()
     #print(start4 - start3)
     if not self.testing:
         e_ids = subg.edge_ids([e_u, e_v], [e_v, e_u])
         #start5 = time.time()
         #print(start5 - start4)
         subg = dgl.remove_edges(subg, e_ids)
     #start6 = time.time()
     #print(start6 - start0)
     #print()
     return subg
Example #11
0
 def sample_blocks(self, seeds, heads=None, tails=None, neg_tails=None):
     blocks = []
     for sampler in self.samplers:
         frontier = sampler(seeds)  # frontier包含了原图的 所有 节点
         if heads is not None:
             eids = frontier.edge_ids(torch.cat([heads, heads]),
                                      torch.cat([tails, neg_tails]),
                                      return_uv=True)[2]
             if len(eids) > 0:
                 old_frontier = frontier
                 frontier = dgl.remove_edges(old_frontier, eids)
                 #print(old_frontier)
                 #print(frontier)
                 #print(frontier.edata['weights'])
                 #frontier.edata['weights'] = old_frontier.edata['weights'][frontier.edata[dgl.EID]]
         block = compact_and_copy(frontier, seeds)  # block只包含了seeds和采样的邻居节点
         seeds = block.srcdata[
             dgl.
             NID]  # srcdata 也包含了seeds的邻居(想要更新seeds 那么在上一层就必须先更新seeds的邻居)
         blocks.insert(0, block)
     return blocks
Example #12
0
 def extract_graph_new(self, G, u_id, v_id):
     v_id += self.num_user
     static_u = torch.zeros(len(self.class_values))
     static_v = torch.zeros(len(self.class_values))
     start0 = time.time()
     u_nodes, v, e_ids_1 = G.in_edges(v_id, "all")
     u, v_nodes, e_ids_2 = G.out_edges(u_id, "all")
     e_ids = []
     nodes = torch.cat([u_nodes, v_nodes])
     for i in range(u_nodes.shape[0]):
         if u_nodes[i] == u_id:
             e_ids.append(e_ids_1[i])
     for i in range(v_nodes.shape[0]):
         if v_nodes[i] == v_id:
             e_ids.append(e_ids_2[i])
     #start1 = time.time()
     #print(start1 - start0)
     subg = dgl.node_subgraph(G, nodes)
     #start2 = time.time()
     #print(start2 - start1)
     subg.ndata['node_label'] = torch.zeros([subg.num_nodes(), 4])
     pid = subg.ndata[dgl.NID]
     #start3 = time.time()
     #print(start3 - start2)
     for i in range(pid.shape[0]):
         if pid[i] == u_id:
             e_u = i
             subg.ndata['node_label'][i, 0] = 1
         elif pid[i] == v_id:
             e_v = i
             subg.ndata['node_label'][i, 1] = 1
         elif pid[i] in u:
             subg.ndata['node_label'][i, 2] = 1
         elif pid[i] in v:
             subg.ndata['node_label'][i, 3] = 1
     subg = dgl.remove_edges(subg, e_ids)
     start6 = time.time()
     print(start6 - start0)
     print()
     return subg
Example #13
0
    def obtain_Bs(self, ed_ids):
        n_edges = len(ed_ids)
        ed_ids = torch.LongTensor(np.asarray(ed_ids))
        heads, tails = self.g.find_edges(ed_ids)
        neg_tails = self.weights.multinomial(self.num_negs * n_edges, replacement=True)
        neg_heads = heads.view(-1, 1).expand(n_edges, self.num_negs).flatten()
        pos_graph = dgl.graph((heads, tails), num_nodes=self.g.number_of_nodes())
        neg_graph = dgl.graph((neg_heads, neg_tails), num_nodes=self.g.number_of_nodes())
        pos_graph, neg_graph = dgl.compact_graphs([pos_graph, neg_graph])

        ids = pos_graph.ndata[dgl.NID]
        B = []
        for s in self.fanout:
            nf = sample_neighbors(self.g, nodes=ids, fanout=s, replace=True)      # 返回采样后的图,节点不变,边仅保留采样到的
            _, _, edge_ids = nf.edge_ids(
                torch.cat([heads, tails, neg_heads, neg_tails]),
                torch.cat([tails, heads, neg_tails, neg_heads]),
                return_uv=True)
            nf = dgl.remove_edges(nf, edge_ids)          # 用于计算损失函数的边剔除,前向传播用剩下的边
            b = dgl.to_block(nf, ids)        # 转为二部图,可以方便读取src和dst节点,将后一层节点作为dst
            ids = b.srcdata[dgl.NID]        # 二部图源节点作为前一层的ids
            B.insert(0, b)                  # 插入到列表最前
        return pos_graph, neg_graph, B
Example #14
0
    def split_train_test(g, train, val):
        u, v = g.edges()

        eids = np.arange(g.number_of_edges())
        eids = np.random.permutation(eids)
        test_size = int(len(eids) * (1 - train - val))
        val_size = int(len(eids) * val)
        train_size = g.number_of_edges() - test_size - val_size
        test_pos_u, test_pos_v = u[eids[:test_size]], v[eids[:test_size]]
        val_pos_u, val_pos_v = u[eids[test_size : test_size + val_size]], v[eids[test_size : test_size + val_size]]
        train_pos_u, train_pos_v = u[eids[test_size + val_size:]], v[eids[test_size + val_size:]]

        # Find all negative edges and split them for training and testing
        adj = sp.coo_matrix((np.ones(len(u)), (u.numpy(), v.numpy())))
        adj_neg = 1 - adj.todense() - np.eye(g.number_of_nodes())
        neg_u, neg_v = np.where(adj_neg != 0)

        neg_eids = np.random.choice(len(neg_u), g.number_of_edges())
        test_neg_u, test_neg_v = neg_u[neg_eids[:test_size]], neg_v[neg_eids[:test_size]]
        val_neg_u, val_neg_v = neg_u[neg_eids[test_size: test_size + val_size]], neg_v[neg_eids[test_size: test_size + val_size]]
        train_neg_u, train_neg_v = neg_u[neg_eids[test_size + val_size:]], neg_v[neg_eids[test_size + val_size:]]

        train_g = dgl.add_self_loop(dgl.remove_edges(g, eids[:test_size + val_size]))
        # import pdb
        # pdb.set_trace()

        train_pos_g = dgl.graph((train_pos_u, train_pos_v), num_nodes=g.number_of_nodes())
        train_neg_g = dgl.graph((train_neg_u, train_neg_v), num_nodes=g.number_of_nodes())

        val_pos_g = dgl.graph((val_pos_u, val_pos_v), num_nodes=g.number_of_nodes())
        val_neg_g = dgl.graph((val_neg_u, val_neg_v), num_nodes=g.number_of_nodes())

        test_pos_g = dgl.graph((test_pos_u, test_pos_v), num_nodes=g.number_of_nodes())
        test_neg_g = dgl.graph((test_neg_u, test_neg_v), num_nodes=g.number_of_nodes())

        return train_g, train_pos_g, train_neg_g, val_pos_g, val_neg_g, test_pos_g, test_neg_g
Example #15
0
def test_hetero_conv(agg, idtype):
    g = dgl.heterograph(
        {
            ('user', 'follows', 'user'): ([0, 0, 2, 1], [1, 2, 1, 3]),
            ('user', 'plays', 'game'): ([0, 0, 0, 1, 2], [0, 2, 3, 0, 2]),
            ('store', 'sells', 'game'): ([0, 0, 1, 1], [0, 3, 1, 2])
        },
        idtype=idtype,
        device=F.ctx())
    conv = nn.HeteroGraphConv(
        {
            'follows': nn.GraphConv(2, 3, allow_zero_in_degree=True),
            'plays': nn.GraphConv(2, 4, allow_zero_in_degree=True),
            'sells': nn.GraphConv(3, 4, allow_zero_in_degree=True)
        }, agg)
    conv = conv.to(F.ctx())

    # test pickle
    th.save(conv, tmp_buffer)

    uf = F.randn((4, 2))
    gf = F.randn((4, 4))
    sf = F.randn((2, 3))

    h = conv(g, {'user': uf, 'game': gf, 'store': sf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 2, 4)

    block = dgl.to_block(g.to(F.cpu()), {
        'user': [0, 1, 2, 3],
        'game': [0, 1, 2, 3],
        'store': []
    }).to(F.ctx())
    h = conv(block, ({
        'user': uf,
        'game': gf,
        'store': sf
    }, {
        'user': uf,
        'game': gf,
        'store': sf[0:0]
    }))
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 2, 4)

    h = conv(block, {'user': uf, 'game': gf, 'store': sf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 2, 4)

    # test with mod args
    class MyMod(th.nn.Module):
        def __init__(self, s1, s2):
            super(MyMod, self).__init__()
            self.carg1 = 0
            self.carg2 = 0
            self.s1 = s1
            self.s2 = s2

        def forward(self, g, h, arg1=None, *, arg2=None):
            if arg1 is not None:
                self.carg1 += 1
            if arg2 is not None:
                self.carg2 += 1
            return th.zeros((g.number_of_dst_nodes(), self.s2))

    mod1 = MyMod(2, 3)
    mod2 = MyMod(2, 4)
    mod3 = MyMod(3, 4)
    conv = nn.HeteroGraphConv({
        'follows': mod1,
        'plays': mod2,
        'sells': mod3
    }, agg)
    conv = conv.to(F.ctx())
    mod_args = {'follows': (1, ), 'plays': (1, )}
    mod_kwargs = {'sells': {'arg2': 'abc'}}
    h = conv(g, {
        'user': uf,
        'game': gf,
        'store': sf
    },
             mod_args=mod_args,
             mod_kwargs=mod_kwargs)
    assert mod1.carg1 == 1
    assert mod1.carg2 == 0
    assert mod2.carg1 == 1
    assert mod2.carg2 == 0
    assert mod3.carg1 == 0
    assert mod3.carg2 == 1

    #conv on graph without any edges
    for etype in g.etypes:
        g = dgl.remove_edges(g, g.edges(form='eid', etype=etype), etype=etype)
    assert g.num_edges() == 0
    h = conv(g, {'user': uf, 'game': gf, 'store': sf})
    assert set(h.keys()) == {'user', 'game'}

    block = dgl.to_block(g.to(F.cpu()), {
        'user': [0, 1, 2, 3],
        'game': [0, 1, 2, 3],
        'store': []
    }).to(F.ctx())
    h = conv(block, ({
        'user': uf,
        'game': gf,
        'store': sf
    }, {
        'user': uf,
        'game': gf,
        'store': sf[0:0]
    }))
    assert set(h.keys()) == {'user', 'game'}
Example #16
0
train_neg_u, train_neg_v = neg_u[neg_eids[train_size:]], neg_v[neg_eids[train_size:]]


######################################################################
# When training, you will need to remove the edges in the test set from
# the original graph. You can do this via ``dgl.remove_edges``.
#
# .. note::
#
#    ``dgl.remove_edges`` works by creating a subgraph from the
#    original graph, resulting in a copy and therefore could be slow for
#    large graphs. If so, you could save the training and test graph to
#    disk, as you would do for preprocessing.
#

train_g = dgl.remove_edges(g, eids[:test_size])


######################################################################
# Define a GraphSAGE model
# ------------------------
#
# This tutorial builds a model consisting of two
# `GraphSAGE <https://arxiv.org/abs/1706.02216>`__ layers, each computes
# new node representations by averaging neighbor information. DGL provides
# ``dgl.nn.SAGEConv`` that conveniently creates a GraphSAGE layer.
#

from dgl.nn import SAGEConv

# ----------- 2. create model -------------- #
Example #17
0
def dglMainMovielens(layers, batch_size, epochs, hiddeen_dims, topK):
    # 拿到数据
    train_data, test_data, user_data, item_data = get_ml_100k()

    # 把用户id和项目id的类别换成枚举类
    train_data = train_data.astype({
        'user_id': 'category',
        'item_id': 'category'
    })
    test_data = test_data.astype({
        'user_id': 'category',
        'item_id': 'category'
    })

    # 训练集和测试集的数据保持一致
    # test_data['user_id'].cat.set_categories(train_data['user_id'].cat.categories, inplace=True)
    # test_data['item_id'].cat.set_categories(train_data['item_id'].cat.categories, inplace=True)

    # 实现了绝对id到相对id的映射
    train_user_ids = torch.LongTensor(train_data['user_id'].cat.codes.values)
    train_item_ids = torch.LongTensor(train_data['item_id'].cat.codes.values)
    train_ratings = torch.LongTensor(train_data['rating'].values)

    # 全连接图的建立,准备user的id,item的id,item的id只留训练过的
    all_user_ids = list(set(train_user_ids.tolist()))
    all_item_ids = list(set(train_item_ids.tolist()))
    all_user_ids = [
        val for val in all_user_ids for i in range(len(all_item_ids))
    ]
    all_item_ids = all_item_ids * len(set(all_user_ids))

    # 建立字典对应前后id
    user_dict = dict(
        zip(train_user_ids.tolist(), train_data['user_id'].values.tolist()))
    item_dict = dict(
        zip(train_item_ids.tolist(), train_data['item_id'].values.tolist()))

    # test_user_ids = torch.LongTensor(test_data['user_id'].cat.codes.values)
    # test_item_ids = torch.LongTensor(test_data['item_id'].cat.codes.values)
    # test_ratings = torch.LongTensor(test_data['rating'].values)

    # 创建异构图
    graph = dgl.heterograph({
        ('user', 'watched', 'item'): (train_user_ids, train_item_ids),
        ('item', 'watchedby', 'user'): (train_item_ids, train_user_ids)
    })

    # 令训练数据和用户、项目数据一致
    user_data[0] = user_data[0].astype('category')
    user_data[0] = user_data[0].cat.set_categories(
        train_data['user_id'].cat.categories)
    user_data = user_data.dropna(subset=[0])
    user_data[0] = user_data[0].cat.codes
    user_data = user_data.sort_values(0)

    item_data[0] = item_data[0].astype('category')
    item_data[0] = item_data[0].cat.set_categories(
        train_data['item_id'].cat.categories)
    item_data = item_data.dropna(subset=[0])
    item_data[0] = item_data[0].cat.codes
    item_data = item_data.sort_values(0)

    # 处理用户的年龄、性别、职业,以及项目的体裁one-hot向量
    user_data[2] = user_data[2].astype('category')
    user_data[3] = user_data[3].astype('category')
    # user_data[4] = user_data[4].astype('category')

    # user_age = user_data[1].values // 10
    # num_user_age_bins = user_age.max() + 1

    user_gender = user_data[2].cat.codes.values
    num_user_genders = len(user_data[2].cat.categories)

    # user_occupation = user_data[3].cat.codes.values
    # num_user_occupations = len(user_data[3].cat.categories)

    item_genres = item_data[range(5, 24)].values
    num_item_genres = item_genres.shape[1]

    # 将上述特征赋予图中的结点
    # graph.nodes['user'].data['age'] = torch.LongTensor(user_age)
    graph.nodes['user'].data['gender'] = torch.LongTensor(user_gender)
    # graph.nodes['user'].data['occupation'] = torch.LongTensor(user_occupation)

    graph.nodes['item'].data['genres'] = torch.FloatTensor(item_genres)

    # 本来直接用边类型就可以,但是会报错,只好用全称
    graph.edges[('item', 'watchedby',
                 'user')].data['rating'] = torch.LongTensor(train_ratings)
    graph.edges[('user', 'watched',
                 'item')].data['rating'] = torch.LongTensor(train_ratings)

    # target_graph.edges[('item', 'watchedby', 'user')].data['rating'] = torch.LongTensor(train_ratings)
    # target_graph.edges[('user', 'watched', 'item')].data['rating'] = torch.LongTensor(train_ratings)

    # 创建用户、项目全连接图
    all_graph = dgl.heterograph({
        ('user', 'watched', 'item'): (all_user_ids, all_item_ids)
    })
    #real_data为之后还原id做准备
    real_data = torch.tensor(list(zip(all_user_ids, all_item_ids)),
                             dtype=torch.int)
    all_graph.edata['real_data'] = real_data
    # ---------------------------------------------从全连接图中去掉历史连接------------------------------------------------
    # 训练时要去掉用户和项目间的关联
    seeds = {
        'user': list(set(train_user_ids.tolist())),
        'item': list(set(train_item_ids.tolist()))
    }

    sampled_graph = all_graph.in_subgraph(seeds)

    _, _, edges_to_remove = sampled_graph.edge_ids(train_user_ids,
                                                   train_item_ids,
                                                   etype=('user', 'watched',
                                                          'item'),
                                                   return_uv=True)
    # _, _, edges_to_remove_rev = graph.edge_ids(
    #     train_item_ids, train_user_ids, etype=('item', 'watchedby', 'user'), return_uv=True)

    # sampled_with_edges_removed = dgl.remove_edges(
    #     sampled_graph,
    #     {('user', 'watched', 'item'): edges_to_remove, ('item', 'watchedby', 'user'): edges_to_remove_rev}
    # )

    target_graph = dgl.remove_edges(sampled_graph, edges_to_remove,
                                    ('user', 'watched', 'item'))

    # target_graph = dgl.remove_edges(target_graph,edges_to_remove_rev, ('item', 'watchedby', 'user'))
    # ---------------------------------------------从全连接图中去掉历史连接------------------------------------------------
    # target_graph.nodes['user'].data['gender'] = torch.LongTensor(user_gender)
    # target_graph.nodes['item'].data['genres'] = torch.FloatTensor(item_genres)

    # 设置数据集
    train_dataset = TensorDataset(train_user_ids, train_item_ids,
                                  train_ratings)

    # test_dataset = TensorDataset(test_user_ids, test_item_ids, test_ratings)

    # 定义训练过程
    NUM_LAYERS = layers
    BATCH_SIZE = batch_size
    NUM_EPOCHS = epochs

    HIDDEN_DIMS = hiddeen_dims
    sampler = MinibatchSampler(graph, NUM_LAYERS)

    # 准备加载数据
    train_dataloader = DataLoader(train_dataset,
                                  batch_size=BATCH_SIZE,
                                  collate_fn=sampler.sample,
                                  shuffle=True)
    # test_dataloader = DataLoader(test_dataset, batch_size=BATCH_SIZE, collate_fn=sampler.sample, shuffle=False)

    # 创建模型
    model = GCMCRating2(graph.number_of_nodes('user'),
                        graph.number_of_nodes('item'), HIDDEN_DIMS, 5,
                        NUM_LAYERS, num_user_genders, num_item_genres)

    # 使用Adam优化器
    opt = torch.optim.Adam(model.parameters())

    # 开始训练
    epoch = 0
    for _ in range(NUM_EPOCHS):
        model.train()
        # 加个进度条,直观
        # 首先是训练
        with tqdm.tqdm(train_dataloader) as t:
            # with torch.no_grad():
            predictions = []
            ratings = []
            # real_data = []
            for pair_graph, blocks in t:
                # real_data.append(pair_graph.edata['real_data'])
                user_emb, item_emb = model(blocks)
                prediction = model.compute_score(pair_graph, user_emb,
                                                 item_emb)
                loss = ((prediction - pair_graph.edata['rating'])**2).mean()
                opt.zero_grad()
                loss.backward()
                opt.step()
                t.set_postfix({'loss': '%.4f' % loss.item()}, refresh=False)
                ratings.append(pair_graph.edata['rating'])
                predictions.append(prediction)
            # predictions = torch.cat(predictions, 0)
            # ratings = torch.cat(ratings, 0)
            # real_data = torch.cat(real_data, 0)
        model.eval()

        epoch += 1
        if epoch % 10 == 0:
            # -----------------------------------------------------------------------------------------------------------
            # ---------------------------------------graph转block---------------------------------------------
            # 创建子图块
            train_blocks = []
            block = dgl.to_block(graph)
            # 把评分复制过去
            # block.edges[('user', 'watched', 'item')].data['rating'] = \
            #     graph.edges[('user', 'watched', 'item')].data['rating']
            # block.edges[('item', 'watchedby', 'user')].data['rating'] = \
            #     graph.edges[('item', 'watchedby', 'user')].data['rating']

            train_blocks.insert(0, block)
            # ---------------------------------------graph转block---------------------------------------------

            # 将train_blocks输入模型
            user_emb, item_emb = model(train_blocks)

            # 基于target_graph得到预测评分
            prediction = model.compute_score(target_graph, user_emb, item_emb)

            # ---------------------------------------还原用户与项目的初始id---------------------------------------------
            real_data = target_graph.edata['real_data']

            real_data = pd.DataFrame(real_data.tolist())
            real_data.columns = ['user_id', 'item_id']

            real_user = real_data['user_id'].values.tolist()
            real_uid = [user_dict[k] for k in real_user]
            real_data['user_id'] = real_uid

            real_item = real_data['item_id'].values.tolist()
            real_uid = [item_dict[k] for k in real_item]
            real_data['item_id'] = real_uid
            # ---------------------------------------还原用户与项目的初始id---------------------------------------------
            # 将边两端的节点给到result
            result = real_data
            # 列表降维,去掉prediction中单个元素外的中括号
            predictions = np.ravel(prediction.tolist())
            # predictions = sum(prediction.tolist(), [])

            # 将边上预测得到的值给到result的'rating'
            result['rating'] = predictions
            # 按user_id分组排序
            result = result.groupby('user_id').apply(lambda x: x.sort_values(
                by="rating", ascending=False)).reset_index(drop=True)
            result.to_csv('file_saved/ml-DGLresult.csv', index=None)
            #-----------------------------------------------------------------------------------------------------------
            print(result)

            result.to_csv(
                'new_saved/dgl/ml-DGLresult-epoch{}.csv'.format(epoch),
                index=None)
            m1 = pd.DataFrame(model.W.weight.tolist())
            m2 = pd.DataFrame(model.V.weight.tolist())
            m1.to_csv('new_saved/dgl/ml-GCMC-W-epoch{}.csv'.format(epoch),
                      index=None,
                      header=None)
            m2.to_csv('new_saved/dgl/ml-GCMC-V-epoch{}.csv'.format(epoch),
                      index=None,
                      header=None)

            for i in range(layers):
                l1 = pd.DataFrame(
                    model.layers[i].heteroconv.mods['watchedby'].W_r.flatten(
                        1).tolist())
                l2 = pd.DataFrame(model.layers[i].heteroconv.mods['watchedby'].
                                  W.weight.tolist())
                l1.to_csv(
                    'new_saved/dgl/ml-GCMCConv-W_r-epoch{}-layer{}.csv'.format(
                        epoch, i),
                    index=None,
                    header=None)
                l2.to_csv(
                    'new_saved/dgl/ml-GCMCConv-W-epoch{}-layer{}.csv'.format(
                        epoch, i),
                    index=None,
                    header=None)

        recommend(item_data_for_recommend, topK, FSLflag)
Example #18
0
def dglMainFSL(layers, batch_size, epochs, hiddeen_dims, topK):
    # 从初始输入里拿到数据
    train_data, user_data, item_data, classify_data = get_bigraph()
    train_data = train_data.astype({'user_id': 'str', 'item_id': 'str'})
    item_data_for_recommend = item_data.copy()
    rating_count = train_data['rating'].value_counts().values.tolist()
    NUM_RATINGS = len(rating_count)

    classify_id = classify_data['classify_id'].values.tolist()
    classify_num = len(set(classify_id))

    # 把用户id和项目id的类型换成枚举类
    train_data = train_data.astype({
        'user_id': 'category',
        'item_id': 'category'
    })

    # 训练集和测试集的数据保持一致

    # 这两步操作从训练集和测试集数据里提取出0开始的相对位置ID
    # 用于后续数据集的创建,以及异构图graph的创建
    train_user_ids = torch.LongTensor(train_data['user_id'].cat.codes.values)
    train_item_ids = torch.LongTensor(train_data['item_id'].cat.codes.values)
    train_data['rating'] = train_data['rating'].astype(float)
    train_ratings = torch.LongTensor(train_data['rating'].values)

    # 全连接图的建立,准备user的id,item的id,item的id只留训练过的
    all_user_ids = list(set(train_user_ids.tolist()))
    all_item_ids = list(set(train_item_ids.tolist()))
    all_user_ids = [
        val for val in all_user_ids for i in range(len(all_item_ids))
    ]
    all_item_ids = all_item_ids * len(set(all_user_ids))

    # 建立字典对应前后id
    user_dict = dict(
        zip(train_user_ids.tolist(), train_data['user_id'].values.tolist()))
    item_dict = dict(
        zip(train_item_ids.tolist(), train_data['item_id'].values.tolist()))

    # 创建异构图
    graph = dgl.heterograph({
        ('user', 'watched', 'item'): (train_user_ids, train_item_ids),
        ('item', 'watchedby', 'user'): (train_item_ids, train_user_ids)
    })
    # 令训练数据和用户、项目数据一致
    user_data[0] = user_data[0].astype('category')
    user_data[0] = user_data[0].cat.set_categories(
        train_data['user_id'].astype('category').cat.categories)
    # 更新了类别后,训练数据集的类别可能比整体用户数的类别少,导致产生空值
    # 为此需要进行空值去除,具体就是把第0列的空值去掉
    user_data = user_data.dropna(subset=[0])
    # codes是类别数值到索引值的映射,把原来很长的用户id映射成从0开始的位置整数
    user_data[0] = user_data[0].cat.codes
    user_data = user_data.sort_values(0)

    # 这里操作的含义就是缩减项目数,让第0列的index数值符合实际的item数量
    item_data[0] = item_data[0].astype('category')
    item_data[0] = item_data[0].cat.set_categories(
        train_data['item_id'].cat.categories)
    item_data = item_data.dropna(subset=[0])
    item_data[0] = item_data[0].cat.codes
    item_data = item_data.sort_values(0)

    # 处理用户以及项目的特征one-hot向量
    user_data[1] = user_data[1].astype('category')

    user_gender = user_data[1].cat.codes.values
    num_user_genders = len(user_data[1].cat.categories)

    item_data[1] = item_data[1].astype('category')

    item_genres = item_data[1].cat.codes.values
    num_item_genres = len(item_data[1].cat.categories)

    # 将上述特征赋予图中的结点
    graph.nodes['user'].data['gender'] = torch.LongTensor(user_gender)

    graph.nodes['item'].data['genres'] = torch.LongTensor(item_genres)

    # 本来直接用边类型就可以,但是会报错,只好用全称
    graph.edges[('item', 'watchedby',
                 'user')].data['rating'] = torch.LongTensor(train_ratings)
    graph.edges[('user', 'watched',
                 'item')].data['rating'] = torch.LongTensor(train_ratings)
    # -------------------------------------------------------------------------------------------------------------------
    # 创建用户、项目全连接图
    all_graph = dgl.heterograph({
        ('user', 'watched', 'item'): (all_user_ids, all_item_ids)
    })
    # real_data为之后还原id做准备
    real_data = torch.tensor(list(zip(all_user_ids, all_item_ids)),
                             dtype=torch.int)
    all_graph.edata['real_data'] = real_data
    # ---------------------------------------------从全连接图中去掉历史连接---------------------------------------------
    # 训练时要去掉用户和项目间的关联
    seeds = {
        'user': list(set(train_user_ids.tolist())),
        'item': list(set(train_item_ids.tolist()))
    }

    sampled_graph = all_graph.in_subgraph(seeds)

    _, _, edges_to_remove = sampled_graph.edge_ids(train_user_ids,
                                                   train_item_ids,
                                                   etype=('user', 'watched',
                                                          'item'),
                                                   return_uv=True)
    # _, _, edges_to_remove_rev = graph.edge_ids(
    #     train_item_ids, train_user_ids, etype=('item', 'watchedby', 'user'), return_uv=True)

    # sampled_with_edges_removed = dgl.remove_edges(
    #     sampled_graph,
    #     {('user', 'watched', 'item'): edges_to_remove, ('item', 'watchedby', 'user'): edges_to_remove_rev}
    # )

    target_graph = dgl.remove_edges(sampled_graph, edges_to_remove,
                                    ('user', 'watched', 'item'))

    # target_graph = dgl.remove_edges(target_graph,edges_to_remove_rev, ('item', 'watchedby', 'user'))
    # ---------------------------------------------从全连接图中去掉历史连接---------------------------------------------
    # target_graph.nodes['user'].data['gender'] = torch.LongTensor(user_gender)
    # target_graph.nodes['item'].data['genres'] = torch.FloatTensor(item_genres)
    # -------------------------------------------------------------------------------------------------------------------
    # 设置数据集
    train_dataset = TensorDataset(train_user_ids, train_item_ids,
                                  train_ratings)

    # 定义训练过程
    NUM_LAYERS = layers
    BATCH_SIZE = batch_size
    NUM_EPOCHS = epochs

    HIDDEN_DIMS = hiddeen_dims
    sampler = MinibatchSampler(graph, NUM_LAYERS)

    # 准备加载数据
    train_dataloader = DataLoader(train_dataset,
                                  batch_size=BATCH_SIZE,
                                  collate_fn=sampler.sample,
                                  shuffle=True)

    # 创建模型
    model = GCMCRating1(graph.number_of_nodes('user'),
                        graph.number_of_nodes('item'), HIDDEN_DIMS,
                        NUM_RATINGS, NUM_LAYERS, num_user_genders,
                        num_item_genres)
    # 使用Adam优化器
    opt = torch.optim.Adam(model.parameters())

    epoch = 0
    # 开始训练
    for _ in range(NUM_EPOCHS):
        model.train()
        # 加个进度条,直观
        # 首先是训练
        with tqdm.tqdm(train_dataloader) as t:
            predictions = []
            # ratings = []
            # real_data = []
            for pair_graph, blocks in t:
                # real_data.append(pair_graph.edata['real_data'])
                user_emb, item_emb = model(blocks)
                prediction = model.compute_score(pair_graph, user_emb,
                                                 item_emb)
                loss = ((prediction - pair_graph.edata['rating'])**2).mean()
                opt.zero_grad()
                loss.backward()
                opt.step()
                t.set_postfix({'loss': '%.4f' % loss.item()}, refresh=False)
                # ratings.append(pair_graph.edata['rating'])
                predictions.append(prediction)
            predictions = torch.cat(predictions, 0)
            # ratings = torch.cat(ratings, 0)
            # real_data = torch.cat(real_data, 0)
        model.eval()

        epoch += 1
        if epoch % 10 == 0:
            # -----------------------------------------------------------------------------------------------------------
            # ---------------------------------------graph转block---------------------------------------------
            # 创建子图块
            train_blocks = []
            block = dgl.to_block(graph)
            # 把评分复制过去
            # block.edges[('user', 'watched', 'item')].data['rating'] = \
            #     graph.edges[('user', 'watched', 'item')].data['rating']
            # block.edges[('item', 'watchedby', 'user')].data['rating'] = \
            #     graph.edges[('item', 'watchedby', 'user')].data['rating']

            train_blocks.insert(0, block)
            # ---------------------------------------graph转block---------------------------------------------

            # 将train_blocks输入模型
            user_emb, item_emb = model(train_blocks)

            # 基于target_graph得到预测评分
            prediction = model.compute_score(target_graph, user_emb, item_emb)

            # ---------------------------------------还原用户与项目的初始id---------------------------------------------
            real_data = target_graph.edata['real_data']

            real_data = pd.DataFrame(real_data.tolist())
            real_data.columns = ['user_id', 'item_id']

            real_user = real_data['user_id'].values.tolist()
            real_uid = [user_dict[k] for k in real_user]
            real_data['user_id'] = real_uid

            real_item = real_data['item_id'].values.tolist()
            real_uid = [item_dict[k] for k in real_item]
            real_data['item_id'] = real_uid
            # ---------------------------------------还原用户与项目的初始id---------------------------------------------
            # 将边两端的节点给到result
            result = real_data
            # 列表降维,去掉prediction中单个元素外的中括号
            predictions = np.ravel(prediction.tolist())
            # predictions = sum(prediction.tolist(), [])

            # 将边上预测得到的值给到result的'rating'
            result['rating'] = predictions
            # 按user_id分组排序
            result = result.groupby('user_id').apply(lambda x: x.sort_values(
                by="rating", ascending=False)).reset_index(drop=True)
            result.to_csv('file_saved/fsl-DGLresult.csv', index=None)
            # -----------------------------------------------------------------------------------------------------------
            print(result)

            result.to_csv(
                'new_saved/dgl/fsl-DGLresult-epoch{}.csv'.format(epoch),
                index=None)
            m1 = pd.DataFrame(model.W.weight.tolist())
            m2 = pd.DataFrame(model.V.weight.tolist())
            m1.to_csv('new_saved/dgl/fsl-GCMC-W-epoch{}.csv'.format(epoch),
                      index=None)
            m2.to_csv('new_saved/dgl/fsl-GCMC-V-epoch{}.csv'.format(epoch),
                      index=None)

            for i in range(layers):
                l1 = pd.DataFrame(
                    model.layers[i].heteroconv.mods['watchedby'].W_r.flatten(
                        1).tolist())
                l2 = pd.DataFrame(model.layers[i].heteroconv.mods['watchedby'].
                                  W.weight.tolist())
                l1.to_csv('new_saved/dgl/fsl-GCMCConv-W_r-epoch{}-layer{}.csv'.
                          format(epoch, i),
                          index=None)
                l2.to_csv(
                    'new_saved/dgl/fsl-GCMCConv-W-epoch{}-layer{}.csv'.format(
                        epoch, i),
                    index=None)
        recommend(item_data_for_recommend,
                  topK,
                  FSLflag,
                  classify_num=classify_num)