Example #1
0
# -*- coding: utf-8 -*-
"""
@author: mwahdan
"""

from dialognlu import TransformerNLU
from dialognlu.readers.goo_format_reader import Reader


# model_path = "../saved_models/joint_distilbert_model"
model_path = "../saved_models/joint_trans_xlnet_model"

print("Loading model ...")
nlu = TransformerNLU.load(model_path)

print("Loading dataset ...")
test_path = "../data/snips/test"
test_dataset = Reader.read(test_path)

print("Evaluating model ...")
token_f1_score, tag_f1_score, report, acc = nlu.evaluate(test_dataset)

print('Slot Classification Report:', report)
print('Slot token f1_score = %f' % token_f1_score)
print('Slot tag f1_score = %f' % tag_f1_score)
print('Intent accuracy = %f' % acc)
Example #2
0
# -*- coding: utf-8 -*-
"""
@author: mwahdan
"""

from dialognlu import BertNLU
from dialognlu.readers.goo_format_reader import Reader

train_path = "../data/snips/train"
val_path = "../data/snips/valid"

train_dataset = Reader.read(train_path)
val_dataset = Reader.read(val_path)

save_path = "../saved_models/joint_bert_model"
epochs = 1  #3
batch_size = 64

config = {"model_type": "bert"}

nlu = BertNLU.from_config(config)
nlu.train(train_dataset, val_dataset, epochs, batch_size)

print("Saving ...")
nlu.save(save_path)
print("Done")
Example #3
0
args = parser.parse_args()
train_data_folder_path = args.train
val_data_folder_path = args.val
save_folder_path = args.save
epochs = args.epochs
batch_size = args.batch
start_model_folder_path = args.model
pretrained_model_name_or_path = args.trans
from_pt = args.from_pt
cache_dir = args.cache_dir
if start_model_folder_path is None and pretrained_model_name_or_path is None:
    raise argparse.ArgumentTypeError(
        "Either --model OR --trans should be provided")

print('Reading data ...')
train_dataset = Reader.read(train_data_folder_path)
val_dataset = Reader.read(val_data_folder_path)

if start_model_folder_path is None:
    config = {
        "cache_dir": cache_dir,
        "pretrained_model_name_or_path": pretrained_model_name_or_path,
        "from_pt": from_pt,
        "num_bert_fine_tune_layers": 10,
        "intent_loss_weight": 1.0,
        "slots_loss_weight": 3.0,
    }
    nlu = TransformerNLU.from_config(config)
else:
    nlu = TransformerNLU.load(start_model_folder_path)
Example #4
0
                    required=True)
parser.add_argument('--data',
                    '-d',
                    help='Path to data in Goo et al format',
                    type=str,
                    required=True)
parser.add_argument('--batch',
                    '-bs',
                    help='Batch size',
                    type=int,
                    default=128,
                    required=False)

args = parser.parse_args()
model_path = args.model
data_folder_path = args.data
batch_size = args.batch

print("Loading model ...")
nlu = AutoNLU.load(model_path)

print("Loading dataset ...")
test_dataset = Reader.read(data_folder_path)

print("Evaluating model ...")
token_f1_score, tag_f1_score, report, acc = nlu.evaluate(test_dataset)

print('Slot Classification Report:', report)
print('Slot token f1_score = %f' % token_f1_score)
print('Slot tag f1_score = %f' % tag_f1_score)
print('Intent accuracy = %f' % acc)